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s u m m a r y

Hydrologic modelers are confronted with the challenge of producing estimates of the uncertainty asso-
ciated with model predictions across an array of catchments and hydrologic flow regimes. Formal
Bayesian approaches are commonly employed for parameter calibration and uncertainty analysis, but
are often criticized for making strong assumptions about the nature of model residuals via the likelihood
function that may not be well satisfied (or even checked). This technical note outlines a residual error
model (likelihood function) specification framework that aims to provide guidance for the application
of more appropriate residual error models through a nested approach that is both flexible and extendible.
The framework synthesizes many previously employed residual error models and has been applied to
four synthetic datasets (of differing error structure) and a real dataset from the Black River catchment
in Queensland, Australia. Each residual error model was investigated and assessed under a top-down
approach focused on its ability to properly characterize the errors. The results of these test applications
indicate that a multifaceted assessment strategy is necessary to determine the adequacy of an individual
likelihood function.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The use of Bayesian inferential approaches is typically predi-
cated on the formal likelihood function adequately characterizing
the form of the true model errors (Mantovan and Todini, 2006).
In hydrology this can be a difficult task, and has led to criticism
of the appropriateness of formal Bayesian methods in ‘‘real data’’
cases (Beven et al., 2007). Regardless of this, Bayesian methods
have become a common part of the hydrologic modeling literature
(e.g., Kuczera and Parent, 1998; Marshall et al., 2004; Smith and
Marshall, 2008). Box and Tiao (1973) provide some insight into
the development and application of formal likelihood functions
within a Bayesian inferential approach, highlighting the impor-
tance of iterative improvement, stating ‘‘to be on firm ground we
must do more than merely postulate a model; we must build
and test a tentative model at each stage of investigation’’ (p. 7).

However, general guidance on how to appropriately construct
a residual error model to be used in hydrologic modeling studies
has received limited attention (e.g., Kuczera, 1983) beyond
application-specific problems. Even application-specific examples
of appropriate likelihood function selection are relatively rare

(e.g., Bates and Campbell, 2001; Kuczera, 1983; Schaefli et al.,
2007; Schoups and Vrugt, 2010; Smith et al., 2010; Sorooshian
and Dracup, 1980); especially when compared to the widespread
adoption of simple normality assumptions (e.g., Ajami et al.,
2007; Campbell et al., 1999; Duan et al., 2007; Hsu et al., 2009;
Samanta et al., 2008; Vrugt et al., 2006). Xu (2001, p. 77) points
out that ‘‘in the field of hydrological modeling, few writers exam-
ine and describe any properties of residuals given by their models
when fitted to the data’’. Recently there have been a few notable
exceptions to this practice (e.g., Engeland et al., 2010; Evin et al.,
2013, 2014; Reichert and Mieleitner, 2009; Schoups and Vrugt,
2010; Smith et al., 2010; Thyer et al., 2009), suggesting it is an
opportune time to review and synthesize likelihood selection
practices.

In this technical note, we aim to introduce an instructive (rather
than prescriptive) framework to direct the selection of a formal
likelihood function to be used within a Bayesian context for mod-
eling residual errors in hydrologic modeling applications. The sig-
nificance and contribution of this work is in the formalization
and illustration of the process for development appropriate resid-
ual error models in conceptual hydrological modeling, rather than
in the idea of adding complexity to likelihood functions (when
warranted). The residual error models employed here are meant
to represent neither the full range of nor necessarily the best can-
didates; rather they comprise many of the most often used forms.
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2. Selection of a residual error model

Conceptual hydrologic models can be thought of, in a generic
sense, as being of the form

Q t ¼ f ðxt; hÞ þ et ð1Þ

where t indexes time, Qt is the observed discharge, f(xt;h) is the
model simulated discharge, xt is the model forcing data (typically,
rainfall and evapotranspiration), h is the set of unknown model
parameters, and et is the error. Proper understanding of the form
of the errors (et) is important for using the model for predictions
and vital to the success of the inference. Under the Bayesian frame-
work, the errors are modeled via the formal likelihood function.

Debate over the selection and appropriate use of formal likeli-
hood functions has dominated recent hydrologic modeling litera-
ture (e.g., Beven et al., 2007, 2008; Mantovan and Todini, 2006;
Mantovan et al., 2007; Stedinger et al., 2008). Given the debate
over formal likelihood functions, a set of instructive guidelines
for examining likelihood function appropriateness are needed to
improve the application of Bayesian methods to hydrologic model-
ing problems and address on of the concerns often raised by oppo-
nents of the formal Bayesian approach. Mirroring a top-down
hydrologic model development approach (Sivapalan et al., 2003),
the residual error model framework presented here advocates add-
ing complexity only when merited by analysis of the residuals
(refer to Box and Tiao, 1973).

The residual error model selection framework, introduced in
Fig. 1, synthesizes many previously employed approaches aimed
at producing more appropriate formal likelihood functions; inno-
vations that account for error characteristics such as autocorrela-
tion (e.g., Sorooshian and Dracup, 1980), non-constant variance
(e.g., Bates and Campbell, 2001), and zero-inflation caused by
extended periods of no observed streamflow (Smith et al., 2010).
Heteroscedasticity is addressed via data transformation using the
Box–Cox family of transformations (Box and Cox, 1964)

yT ¼
ðyþk2Þk1�1

k1
ðk1–0; y > �k2Þ ðaÞ

logðyþ k2Þ ðk1 ¼ 0; y > �k2Þ ðbÞ

(
ð2Þ

where yT is the transformed data, y is the untransformed data, and
k1 and k2 are the Box–Cox parameters with the constraints as
shown. Autocorrelation is accounted for with an autoregressive
model

yt ¼
Xp

j¼1

/jyt�j ð3Þ

where y is the data with time index t, p is the order of the autore-
gressive process, and / are the autoregressive coefficients.
Zero-inflation is considered by using the mixture likelihood
approach (see Table 1) of Smith et al. (2010), where the likelihood
function is represented as the product of three components: (1)
zero observations modeled with zero error (n1), (2) zero observa-
tions modeled with nonzero error (n2), and (3) nonzero
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Fig. 1. The likelihood function selection logic. A basic assumption of the form of the residuals is made and followed by checks on typical areas of deficiency at each level of the
logic.
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