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s u m m a r y

This study adopts a hierarchical Bayesian model averaging (HBMA) method to analyze prediction uncer-
tainty resulted from uncertain components in artificial neural networks (ANNs). The HBMA is an ensem-
ble method for prediction and is used to segregate the sources of model structure uncertainty in ANNs
and investigate their variance contributions to total prediction variance. Specific sources of uncertainty
considered in ANNs include the uncertainty in neural network weights and biases (model parameters),
uncertainty of selecting an activation function for the hidden layer, and uncertainty of selecting a number
of hidden layer nodes (model structure). Prediction uncertainties due to uncertain inputs and ANN model
parameters are represented by within-model variance. Prediction uncertainties due to uncertain activa-
tion function and uncertain number of nodes for the hidden layer are represented by between-model
variance. The method is demonstrated through a study that employs ANNs to predict fluoride concentra-
tion in the aquifers of the Maku area, Azarbaijan, Iran. The results show that uncertain inputs and ANN
model parameters produces the most prediction variance, followed by prediction variances from uncer-
tain number of hidden layer nodes and uncertain activation function.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Artificial neural networks (ANNs) are mathematical approxima-
tors with strong ability to find the non-linear correlation between
input and output data without requiring a comprehensive knowl-
edge about the physical system (Zhang et al., 2009). ANNs have been
applied to various hydrologic problems (Govindaraju, 2000a,b;
Dawson and Wilby, 2001), for example river flood forecasting
(Sudheer et al., 2003; Wei et al., 2012), rainfall forecasting (Hsu
et al., 1995; Kumar et al., 2005; Valverde Ramírez et al., 2005), evap-
oration modeling (Sudheer et al., 2002), groundwater level modeling
(Coppola et al., 2005; Daliakopoulos et al., 2005; Nourani et al.,
2008a,b; Jha and Sahoo, 2015), and groundwater remediation opti-
mization (Rogers and Dowla, 1994). Despite wide applications of
ANNs in the field of hydrology, over-parameterization in weights
and biases and consequently overfitting to ‘‘in-sample’’ data is a

major limitation of ANNs, which may occur in the process of maxi-
mizing likelihood functions or alternatively minimizing fitting
errors (Kingston et al., 2008). This may reduce prediction accuracy
for ‘‘out-sample’’ data that are not used for training ANNs (Tetko
et al., 1995; Maier and Dandy, 2000). In other words, overfitting
can reduce the ‘‘generalization’’ ability of ANN models.
Generalization is the ability of an ANN model to represent an under-
lying system for an ‘‘out-sample’’ data that are not used in the train-
ing procedure. Therefore, it is crucial to select an ANN structure
based on the parsimony principle (Box, 1976; Stone, 1981) to bal-
ance fitting errors and the number of unknown parameters. To
address this issue, Franses and Draisma (1997) proposed the use of
information criteria to choose the best ANN structure. Information
criteria tend to select a simpler ANN structure unless a more compli-
cated structure provides a better understanding of the underlying
system. However, Qi and Zhang (2001) empirically showed that
the selected ANN based on information criteria does not necessarily
have an acceptable performance for fitting ‘‘out-sample’’ data. They
concluded that ‘‘to improve generalization performance of neural
network models, one may need to go beyond the model selection
methods.’’

An alternative to the model selection approach is the artificial
neural network ensemble (Shu and Burn, 2004). In this approach,
outputs from several ANN models, which are trained by the same
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data set, are combined to generate an ensemble output. Several
methods for combining the outputs of multiple artificial intelli-
gence models are proposed in the literature (Ahmad and Zhang,
2002; Shu and Burn, 2004), such as the committee machine
(CM) (Perrone and Cooper, 1993; Chen and Lin, 2006;
Kadkhodaie-Ilkhchi et al., 2009; Labani et al., 2010), the supervised
committee machine (SCM) (Drucker, 1997; Hu and Tsoukalas,
2003; Nadiri et al., 2013), and the Bayesian model averaging
(BMA) (Nadiri et al., 2014). Although the committee machine
methods are shown to improve the generalization ability of
ANNs (Shu and Burn, 2004), they are subjected to two major short-
comings. First, they are not able to quantify the prediction uncer-
tainty. Second, they do not consider the parsimony principle in
evaluating the combination of individual ANN models.

ANN prediction uncertainty stems from two main sources: (1)
the uncertainty in ANN inputs, weights and biases and (2) the
uncertainty in ANN structures. Bayesian neural networks (BNNs)
(Bishop, 1995; Neal, 1995; Müller and Insua, 1998) were used to
train ANN models and to quantify uncertainties from ANN weights
and biases (Kingston et al., 2005; Khan and Coulibaly, 2006) as well
as uncertainties from model structures (Zhang et al., 2009). The
BNN approach prescribes ANN parameters by relatively broad prior
probability distributions. Then, during the calibration (training)
period, prior distributions are sampled by Markov chain Monte
Carlo (MCMC) (Geyer, 1992) or Metropolis algorithm (Haario
et al., 2001) to update to posterior distributions given observation
data. Finally, the posterior distributions of ANN parameters are
used to evaluate prediction means and variances. However, the
BNN method can be overwhelmed by a high number of ANN
parameters. In addition, it is crucial to identify the contribution
of individual sources of uncertainty to total prediction uncertainty
(Wagener and Gupta, 2005).

In this study, we adopt the hierarchical Bayesian model averag-
ing (HBMA) (Chitsazan and Tsai, 2015a; Tsai and Elshall, 2013) to
analyze the contribution of individual sources of uncertainty to
ANN predictions. Bayesian model averaging (Draper, 1995;
Hoeting et al., 1999) is a well-known ensemble approach based
on the law of total probability and Bayes’ theorem. BMA derives
overall prediction mean and variance by averaging all models at
once (Nadiri et al., 2014). However, it does not quantify contribu-
tions of individual uncertain model elements to total estimated
variance. The HBMA extends the Bayesian model averaging
method by segregating multiple sources of model structure uncer-
tainty in a hierarchical order (Chitsazan and Tsai, 2015b). The
HBMA derives BMA prediction mean and variance by averaging
subset models that are developed by an uncertainty source. By
doing so, the HBMA is able to identify the contribution of each
source of uncertainty to total prediction variance. This study
adopts the HBMA to analyze the structural uncertainty as well as
parameter uncertainty in the ANNs. The advantages of the HBMA
in comparison to other neural network ensemble methods are
investigated via the study of predicting fluoride concentration in
aquifers of the Maku area, Azarbaijan, Iran.

2. Methodology

2.1. Artificial neural network (ANN)

Artificial neural networks (ANNs) have been applied to various
large-scale problems, including pattern recognition, classification,
parameter estimation and prediction (Anderson and McNeill,
1992; Ablameyko et al., 2003). The most widely used ANNs to simu-
late hydrological systems are the multilayer perceptron (MLP), a
three-layer feedforward neural network (Govindaraju, 2000a,b;
Sharma et al., 2003). The MLP consists of an input layer, a hidden

layer, and an output layer. Fig. 1 shows a schematic of a typical mul-
tilayer perceptron ANN structure. This study uses four types of input
data (Na+, K+, Ca2+, HCO�3 ). The processing elements in each layer are
called neurons or nodes. The input layer consists of input variables
for the network. The output layer sends out predictions (outputs)
of the network. The output function of the output layer is a linear
function that aggregates the input signals of the output layer. The
hidden layers are placed between the input layer and the output
layer to transform and deliver signals. A vital part of the hidden layer
which has a main role in transferring the network inputs to output is
an activation function, which is typically a continuous and bounded
nonlinear function such as hyperbolic-tangent-sigmoid (Tansig) or
logarithm-sigmoid (Logsig) functions (Cybenko, 1989).

Training algorithms are needed in order to train ANNs to behave
similar to the system of interest. Data used for training ANNs are
referred to as ‘‘in-sample’’ data. Data that are not used in the train-
ing procedure is referred to as ‘‘out-sample’’ data. A brief overview
of the MLP, including its mathematical aspects and implementa-
tion details, can be found in Govindaraju (2000a). The mathemat-
ical expression of a three-layer feedforward ANN for prediction is

Ojk ¼ f 1ðbj þ
X

i

WijIikÞ ð1Þ

Ok ¼ bþ
X

j

WjOjk ð2Þ

where f1 is the activation function for the hidden layer, Iik is the ith
input for the kth sample point, Ojk is the output of jth node of the
hidden layer, Wij and Wj are the weights that control the strength
of connections between layers and bj and b are the biases that are
used to adjust the mean value for the hidden layer and the output
layer, respectively. The ANN output Ok is the kth predicted fluoride
concentration. In the ANN training step, we use the Levenberg–
Marquardt (LM) algorithm (Sahoo and Ray, 2006; Sahoo et al.,
2006) as a supervised learning algorithm to estimate the weights
(Wij and Wj) and the biases (bj and b) (Daliakopoulos et al., 2005).

There are two common sources of uncertainty in the three-layer
feedforward ANN structure: (1) which activation function should
be used for the hidden layer? (2) How many nodes are needed in
the hidden layer? This study considers Tansig and Logsig activation
functions and two to nine nodes in the hidden layer, combinations
of which result in 2 � 8 = 16 ANN structures for fluoride concentra-
tion prediction.

2.2. Hierarchical Bayesian model averaging for neural networks

To segregate and prioritize the sources of structural uncertainty
in ANNs, this study introduces the hierarchical Bayesian model
averaging (HBMA) for prediction and uncertainty analysis.
Consider p sources of uncertainty in a hierarchical order. Each
uncertainty source may suggest a number of propositions (or alter-
natives). For example, in this study the uncertainty in choosing an
activation function for the hidden layer suggests two propositions:
Tansig function and Logsig function. The uncertainty in choosing
the number of nodes in the hidden layer suggests eight proposi-
tions: from two nodes to nine nodes. The combinations of all con-
sidered sources of structural uncertainty form the base models for
fluoride concentration prediction.

We segregate and prioritize the sources of uncertainty in a hier-
archical order and denote the base models at level p and name this
level as base level. Aggregation of base models through the BMA
over different propositions under the same source of uncertainty
forms BMA models at one level up, named level p � 1.
Aggregation of BMA models at level p � 1 through the BMA over
different propositions under the same source of uncertainty forms
another BMA models at one level up, named level p � 2.
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