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s u m m a r y

Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir charac-
teristics are complex, functional forms of reservoir operating rules are always determined subjectively.
As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must
be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using
the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear
regression, surface fitting and a least-squares support vector machine, are established based on the opti-
mal deterministic reservoir operation. These individual models provide three-member decisions for the
BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo
simulation. A case study of China’s the Baise reservoir shows that: (1) the optimal deterministic reservoir
operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the
least-squares support vector machine model is more effective than both piecewise linear regression
and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal
trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which
is of great potential benefit in evaluating the confidence interval of decisions.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The optimal operation of a reservoir is a difficult issue in water
resources management (Guo et al., 2012; Li et al., 2010). For deter-
ministic reservoir operation with a pre-determined inflow, it is
possible to determine the optimal solution (Labadie, 1994; Yeh,
1985). Techniques such as dynamic programming (Bellman,
1956) and improved dynamic programming (e.g., progressive opti-
mality algorithm (Turgeon, 1981), discrete differential dynamic
programming (Heidari et al., 1971)), genetic algorithms (Chang
et al., 2005; Oliveira and Loucks, 1997) and particle swarm

optimization (Guo et al., 2013; Trelea, 2003) have been used to find
optimal solutions for deterministic reservoir operation.

However, deterministic optimization with perfect inflows
knowledge is difficult to apply into the real operations.
Therefore, it is necessary to derive reservoir operating rules
because of limitations on inflow forecasting techniques (Wei and
Hsu, 2008). The reservoir operating rules determine the rate at
which water is released based on currently available information,
such as the current storage and forecast inflow. Either implicit
stochastic optimization (ISO) (Celeste and Billib, 2009; Young,
1967) or explicit stochastic optimization (ESO) (Stedinger et al.,
1984) can be used to derive the reservoir operating rules.

Using ISO, various functional forms have been applied to the
derivation of operating rules. These include linear regression (LR)
(Liu et al., 2011b, 2014; Young, 1967), fuzzy models (Russell and
Campbell, 1996), genetic programming (Li et al., 2014),
two-dimensional surface models (SURF) (Celeste and Billib, 2009;
Celeste et al., 2005), Bayesian networks (Malekmohammadi et al.,
2009) and support vector machines (SVMs) (Ji et al., 2014;
Karamouz et al., 2009; Suykens et al., 2002; Suykens and
Vandewalle, 1999). Piecewise linear regression (PL-REG), SURF

http://dx.doi.org/10.1016/j.jhydrol.2015.06.041
0022-1694/� 2015 Elsevier B.V. All rights reserved.

Abbreviations: BMA, Bayesian model averaging; COR, conventional operating
rules; ESO/ISO, explicit/implicit stochastic optimization; LR, linear regression;
LS-SVM, least-squares support vector machine; MCMC, Markov Chain Monte Carlo;
NRMSD, normalized root mean square deviation; PL-REG, piecewise linear regres-
sion; RMSE, root mean square error; SURF, surface fitting; TDDP, two-dimensional
dynamic programming.
⇑ Corresponding author at: State Key Laboratory of Water Resources and

Hydropower Engineering Science, Wuhan University, Wuhan 430072, China. Tel.:
+86 27 68775788; fax: +86 27 68773568.

E-mail address: liupan@whu.edu.cn (P. Liu).

Journal of Hydrology 528 (2015) 276–285

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2015.06.041&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2015.06.041
mailto:liupan@whu.edu.cn
http://dx.doi.org/10.1016/j.jhydrol.2015.06.041
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


and least-squares SVM (LS-SVM) have been widely used. By ana-
lyzing the optimal trajectory, Liu et al. (2014) concluded that LR
operating rules were suitable for the hydropower operation of
China’s Three Gorges Reservoir, and implemented an uncertainty
analysis for future parameter values. Celeste and Billib (2009)
determined that the SURF model was the best in terms of overall
performance for the Epitácio Pessoa Reservoir, whereas Ji et al.
(2014) proposed SVM operating rules for the Jinsha Reservoirs sys-
tem, demonstrating the effectiveness of SVMs for such scenarios.
Although the above LR, SURF and SVM operating rules have been
successfully used, they are black models and should have model
uncertainty. Therefore, it is necessary to analyze and evaluate the
model uncertainty involved in reservoir operating rules. Bayesian
model averaging (BMA) (Hoeting et al., 1999) can be used to ana-
lyze the uncertainty of selecting models by combining a number
of individual models with different weights. BMA has been widely
applied in the field of water resources, such as for hydrological
forecasting (Ajami et al., 2007; Raftery et al., 2005) and groundwa-
ter modeling (Rojas et al., 2008). Raftery et al. (2005) used BMA to
calibrate 48-h forecasts of surface temperature in the Pacific
Northwest, and showed that BMA outperformed all individual
models. Consequently, we expect that BMA can be used to combine
various reservoir operating rules to generate a new decision and
tackle model uncertainty.

The Expectation–Maximization (EM) (Vrugt et al., 2008) and
Markov Chain Monte Carlo (MCMC) (Vrugt et al., 2008, 2009) algo-
rithms can be used to estimate the BMA parameters
h = {w1, w2, . . ., wK, r2}. The EM algorithm is easy to implement,
but imposes a heavy computational burden because of its high
dimensionality (Vrugt et al., 2008). MCMC simulation estimates
the most likely values of the BMA weights and variances, as well
as the underlying posterior probability density function. MCMC
can be used to explore the parameter space using multiple differ-
ent trajectories (also called Markov Chains). Various methods are
used to generate Markov Chains, including the Metropolis algo-
rithm, Metropolis–Hastings algorithm and Gibbs’ algorithm. The
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm is
an increasingly widespread method, applied the Shuffle Complex
Evolution Metropolis (SCEM-UA) algorithm for global optimization
(Laloy and Vrugt, 2012; Sadegh and Vrugt, 2014; Vrugt et al.,
2008), allowing N different Markov Chains to run simultaneously
in parallel.

The purpose of this study is to use BMA to derive integrated and
robust reservoir operating rules with less uncertainty and more
reliable to the optimal decision (say robust performance) by com-
bining three individual models. Based on the optimal trajectory of
deterministic reservoir operation, piecewise linear regression
(PL-REG), SURF and least-squares SVM (LS-SVM) are used to derive
individual operating rules. BMA model combines these models to
generate a new decision with robust performance by using a con-
fidence interval.

The remainder of this paper is organized as follows. In Section 2,
we describe the optimal deterministic reservoir operation model

and individual reservoir operating rules of PL-REG, SURF and
LS-SVM, and then use BMA to construct integrated reservoir oper-
ating rules. Section 3 describes a case study of China’s the Baise
reservoir, including the results of COR, TDDP, individual reservoir
operating rules (PL-REG, SURF and LS-SVM) and BMA. The perfor-
mance of BMA is compared with that of the conventional, optimal
and individual operating rules in Section 4. Finally, our conclusions
are given in Section 5.

2. Methodology

As shown in Fig. 1, the BMA operating rules are derived as
follows:

(1) The optimal deterministic reservoir operation model is
established, and its optimal solution is obtained using sim-
plified two-dimensional dynamic programming (TDDP)
(Section 2.1).

(2) Based on the above optimal trajectory, the individual
PL-REG, SURF and LS-SVM models are used to derive the
reservoir operating rules (Section 2.2). The optimal trajec-
tory, which is the optimal solution to the deterministic
reservoir optimization model, is used as the samples to
derive the reservoir operating rules by using the fitting
method in the ISO framework.

(3) The BMA reservoir operating rules are derived by combining
the three individual operating rules (Section 2.3).

2.1. Optimal deterministic reservoir operation

The difficulty of balancing upstream and downstream benefits
has made flood control a longstanding challenge. Under the condi-
tion that the reservoir downstream is safe, we considered minimiz-
ing the maximum water level as the only objective:

min Z�m () min
XT

t¼1

fVðtÞg2

( )
ð1Þ

where Z�m is the maximum water level; V(t) is the reservoir storage
at time t; T is the number of time periods; and the square of V(t)
makes it easy to search the objective. Minimizing the maximum
water level Z�m is equivalent to minimizing the sum of the square
of V(t).

The water balance equation, water storage capacity, safe
streamflow at the flood control station, release capacity, incremen-
tal release amount between consecutive time periods and channel
routing constraints (Hsu and Wei, 2007; Zhou and Guo, 2013) are
as follows:

IðtÞ þ Iðt þ 1Þ
2

Dt � RðtÞ þ Rðt þ 1Þ
2

Dt ¼ Vðt þ 1Þ � VðtÞ ð2Þ

Vmin 6 VðtÞ 6 Vmax ð3Þ
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Fig. 1. Flowchart for the derivation of BMA operating rules.
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