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s u m m a r y

The ‘‘curse of dimensionality’’ of dynamic programming (DP) has always been a great challenge to the
cascade reservoirs operation optimization (CROO) because computer memory and computational time
increase exponentially with the increasing number of reservoirs. It is an effective measure to combine
DP with the parallel processing technology to improve the performance. This paper proposes three par-
allel modes for multi-dimensional dynamic programming (MDP) based on .NET4 Parallel Extensions, i.e.,
the stages parallel mode, state combinations parallel mode and hybrid parallel mode. A cascade reser-
voirs of Li Xiangjiang River in China is used as the study instance in this paper, and a detailed contrastive
analysis of the three parallel modes on run-time, parallel acceleration ratio, parallel efficiency and mem-
ory usage has been implemented based on the parallel computing results. Results show that all the three
parallel modes can effectively shorten the run-time so that to alleviate the ‘‘curse of dimensionality’’ of
MDP, but relatively, the state combinations parallel mode is the optimal, the hybrid parallel is suboptimal
and the stages parallel mode is poor.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid propulsion of cascade hydropower development,
cascade reservoirs operation optimization (CROO) is attracting
more and more attention of people all over the world (Jiang
et al., 2014). CROO is a multivariate coupled and complicated non-
linear programming problem, which needs to consider not only the
hydraulic and electrical connection between upstream and down-
stream reservoirs, but also a lot of constraints (Ji et al., 2015). It has
the characteristics of high dimensionality, strong coupling, and
uncertainty, etc. Over the past decades, a wide range of compre-
hensive methods have been used to deal with the CROO problems,
which mainly involve various modern heuristic random search
algorithms and traditional optimization algorithms.

Modern heuristic random search algorithms such as the Genetic
Algorithm (GA) (Baskar et al., 2003; Chiang, 2007; Dariane and
Momtahen, 2009), Particle Swarm Optimization (PSO) (Cai et al.,
2001; Nagesh Kumar and Janga Reddy, 2007; Zhang et al., 2014),
Ant Colony Optimization (ACO) (Zhou and Ji, 2007; Ji et al., 2011;
Moeini and Afshar, 2013), Simulated Annealing (SA) (Basu, 2005),
Evolutionary Programming (EP) (Basu, 2004; Malekmohammadi

et al., 2009), Fuzzy Neural Network (FNN) (Chaves and Kojiri,
2007; Deka and Chandramouli, 2009) and Differential Evolution
algorithm (DE) (Yuan et al., 2008; Yuan and Wu, 2012) have been
extensively used to solve the CROO problems with nonlinear and
non-convex objective functions. Many heuristic random search
algorithms have been proved to possess a global convergence,
while as they are affected by stochastic characteristics, they cannot
guarantee a global optimum with finite iterations.

Those traditional optimization methods include Linear
Programming (LP) (Marino and Mohammadi, 1983; Jabr et al.,
2000; Reis et al., 2006; Lu et al., 2011; Li et al., 2013), Nonlinear
Programming (NLP) (Martin, 1983; Lund and Ferreira, 1996;
Barros et al., 2003; Chen, 2007), Lagrangian Relaxation (LR)
(Hindi and Ghani, 1991; EI-Keib et al., 1994), Quadratic
Programming (QP) (Papageorgiou and Fraga, 2007), Network
Flow Algorithm (NFA) (Braga and Barbosa, 2001), and Dynamic
programming (DP) (Johnson et al., 1993; Raman and
Chandramouli, 1996; Eum et al., 2010; Goor et al., 2011; Shokri
et al., 2013), etc. They are all elitist algorithms, and have already
received different degrees of success in solving CROO problems.

DP is a powerful multi-stage decision-making method, and is a
suitable optimization method for CROO problems as the structure
of the optimization problem conforms to a multi-stage
decision-making process which can be formulated as a DP problem
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(Liang and Hsu, 1995). Moreover, DP imposes no restrictions on the
unsmooth and non-convex nature of CROO problems, which makes
it boasting high popularity among the conventional optimization
techniques for reservoir operation. Over the past decades, DP had
been used extensively in the optimization of reservoir manage-
ment and operation (Huang and Wu, 1993; Travers and Kaye,
1998; Chen et al., 1999).

In discrete DP model, the storage volume of each reservoir in
each stage is discretized into a finite number of points. By the
exhaustive enumeration over all possible combinations of these
discrete points, the global optimality can be assured. The most sig-
nificant characteristic for DP is able to obtain the global optimal
solution and no requirement for the initial trajectories. However,
the well-known ‘‘curse of dimensionality’’ (Bellman, 1961) poses
difficulties and limits the application of DP in CROO problems,
especially for large-scale hydropower system.

In solving CROO problems on large and complex hydropower
systems, a general idea is to adopt suitable methods to avoid or
alleviate the ‘‘curse of dimensionality’’ of DP. Therefore, a variety
of improved DP algorithms have been extensively used (Zhao
et al., 2014), such as Discrete Differential Dynamic Programming
(DDDP) (Heidari et al., 1971; Chow et al., 1975; Liao and
Shoemaker, 1991; Tospornsampan et al., 2005), Incremental
Dynamic Programming (IDP) (Mathlouthi and Lebdi, 2009),
Dynamic Programming with Successive Approximation (DPSA)
(Larson and Korsak, 1970; Opan, 2011), Incremental Dynamic
Programming and Successive Approximations (IDPSA) (Trott and
Yeh, 1973), Progressive Optimality Algorithm (POA) (Turgeon,
1981; Cheng et al., 2012; Lu et al., 2013), and so on. These

improved DP algorithms have effectively avoided the ‘‘curse of
dimensionality’’ problem. However, they also have some disadvan-
tages, for example, POA and DDDP are sensitive to initial trajecto-
ries for each state variable, and may converge to a local optimum in
some situations. DPSA is difficult to be applied to solution of
non-convex problems, and there is also no assurance of conver-
gence to the global optimum.

Therefore, in order to avoid the ‘‘curse of dimensionality’’ and at
the same time obtain the global optimal solution of CROO prob-
lems, there is a lot of work needs to be done, and the most impor-
tant and effective is to improve the computational efficiency of DP.
Generally, there are two basic approaches to improve the compu-
tational efficiency of DP. One is to improve the classical DP algo-
rithm in the case of guarantee the global convergence, the other
is to use new computer techniques including hardware and
software.

For the first approach, related researches have been done by
some scholars. For example, Mousavi et al. (2004) reduced the
computational time of a DP model for a multi-reservoir system
by diagnosing infeasible storage combinations and removing them
from further computations. This method has a certain effect, but
the computational time consuming still enormous and intolerable
when the scale of hydropower system reaches a certain large
degree. Zhao et al. (2012) proposed an improved DP model for
reservoir operation optimization (ROO) by taking the advantage
of the monotonic relationship between reservoir storage and the
optimal release decision. However, the model can only be applied
to reservoir operation with a concave objective function. Ji et al.
(2015) proposed a new multi-layer nested multi-dimensional

Nomenclature

A punish coefficient
E total hydropower generation for all stages over the en-

tire planning horizon (in kWh)
Evt

i evaporation capacity of the ith reservoir in the tth stage
(in m3/s)

Dt decision variables set in the tth stage
f �t ðV

Sb
t�1Þ optimal cumulative output of beginning state Sb at the

tth stage
f �tþ1ðV

Se
t Þ optimal cumulative output of end state Se at the tth

stage
F�t ðÞ optimal cumulative output vector function of cascade

system at the tth stage
Ht

i average water head of the ith hydropower station in the
tth stage

It
i inflow of the ith reservoir in the tth stage (in m3/s)

i reservoir index
Ki efficiency coefficient of the ith hydropower station
M total number of discretized points for the state variable

in a stage
n total number of reservoirs in the cascade system
Ni

t output of the ith hydropower station in the tth stage (in
kW)

Ni
t;min lower output limit of the ith hydropower station in the

tth stage (in kW)
Ni

t;max upper output limit of the ith hydropower station in the
tth stage (in kW)

NtðÞ output function of the tth stage
Qt

i total outflow of the ith reservoir in the tth stage, includ-
ing qt

i and Wt
i (in m3/s)

qt
i outflow through the turbines of the ith reservoir in the

tth stage (in m3/s)

Qi
t;max upper outflow limit of the ith reservoir in the tth stage

(in m3/s)
Qi

t;min lower outflow limit of the ith reservoir in the tth stage
(in m3/s)

Sb beginning state index of a stage, where Sb = 1, 2, . . ., M
Se end state index of a stage, where Se = 1, 2, . . ., M
T total number of stages over the entire planning horizon
t stage index
TN total guaranteed output of the cascade system
Vi

t storage of the ith reservoir at the end of the tth stage (in
m3)

Vi
t�1 storage of the ith reservoir at the beginning of the tth

stage (in m3)
Vi

t;max upper storage limit of the ith reservoir in the tth stage
(in m3)

Vi
t;min lower storage limit of the ith reservoir in the tth stage

(in m3)
Vi

0 storage of the ith reservoir at the beginning of the first
stage (in m3)

Vi
b storage of the ith reservoir at the beginning of entire

planning horizon (in m3)
Vi

T storage of the ith reservoir at the end of the Tth stage (in
m3)

Vi
e storage of the ith reservoir at the end of entire planning

horizon (in m3)
Wi

t outflow through flood discharge gate of the ith reservoir
in the tth stage (in m3)

Dt duration of an operation stage, (in second)
h exponent
rt 0–1 variable
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