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s u m m a r y

Model uncertainty needs to be quantified to provide objective assessments of the reliability of model
predictions and of the risk associated with management decisions that rely on these predictions.
This is particularly true in water resource studies that depend on model-based assessments of alternative
management strategies. In recent decades, Bayesian data assimilation methods have been widely used in
hydrology to assess uncertain model parameters and predictions. In this case study, a particular
data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA)
(Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and
forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using
MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes
(DHI, 2011a–d). The random samples in the posterior parameter ensemble are obtained by
using measurements to update 50 prior parameter samples generated with a Latin Hypercube
Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the
corresponding posterior parameter samples. Two iterative sample update methods are considered: one
based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter
update. These alternatives give nearly the same results and converge in only two iterations. The uncertain
parameters considered include hydraulic conductivities, drainage and river leakage factors, van
Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty
in many of the parameters is reduced during the smoother updating process, reflecting information
obtained from the observations. Some of the parameters are insensitive and do not benefit from
measurement information. The correlation coefficients among certain parameters increase in each
iteration, although they generally stay below 0.50.
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1. Introduction

Hydrological models can provide detailed information that
improves our understanding of complex natural systems. They
can also be used to forecast the effects of different water resource
management scenarios (eg. Cartwright et al., 2006; Li et al., 2010;
Matial and Johnes, 2012). The reliability of a model forecast
depends primarily on uncertainties in model structure, in model
inputs (initial conditions and forcing terms), and in model param-
eters. In this article we describe two efficient methods for

quantifying the effects of uncertainty, illustrating concepts with a
field study that involves complex interactions among surface
water, ground water, and salinity. We consider both input and
parameter uncertainties and account for information provided by
imperfect measurements of some of the forecast variables. Our
approach illustrates how data assimilation techniques can be used
to combine prior information, model predictions, and measure-
ments to provide an integrated picture of uncertainty.

Bayesian methods provide a convenient framework for both
data assimilation and uncertainty analysis. In practical applications
that involve spatially distributed nonlinear models with
non-Gaussian uncertainties the Bayesian approach is usually only
feasible when implemented in an ensemble, or Monte Carlo, form.
Ensemble uncertainty analysis works with a set (or ensemble) of
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parameter samples that describe the likely range of the unknown
parameter values. The algorithm provides interval estimates (or
probabilistic ranges) that explicitly provide information on uncer-
tainty. This is in contrast to methods that provide a single point (or
deterministic) parameter estimate without an accompanying
assessment of uncertainty. In the Bayesian application considered
here the end goal is to produce informative posterior probability
distributions rather than ‘‘best estimates’’ of model parameters
and forecast variables. In this context, point values such as poste-
rior means and modes help to characterize the posterior density
but are not ends in themselves.

Ensemble algorithms start with user-generated prior parameter
samples that represent the best available information about the
parameter prior distribution before considering field observations
of forecast variables. The prior samples are modified by the
Bayesian algorithm to give posterior (or updated) parameter sam-
ples that incorporate the field observations. The posterior statistics
computed by an ensemble algorithm can be viewed as approxima-
tions to the corresponding distributional properties of the exact
Bayesian posterior probability distribution, which is generally not
possible to derive in closed form.

In the past few decades, ensemble methods have been widely
used in uncertainty assessment and data assimilation applications,
reflecting dramatic advances in computational hardware and
methods (Kuczera and Parent, 1998; Helton and Davis, 2003;
Ramirez et al., 2008). Examples include Markov Chain Monte
Carlo (MCMC) and Importance Sampling (IS) methods, which
implement the Bayesian approach with minimal simplifications
and assumptions (Vrugt et al., 2009; Jin et al., 2010). In spatially
distributed hydrologic applications such as the one considered
here the number of uncertain model parameters and states can
become very large. MCMC and other exact ensemble methods
can require very large sample sizes to give accurate results for
large problems, making them computationally expensive.

The computational limitations of these methods have prompted
the development of alternative ensemble approaches that reduce
computational effort by making application-specific approxima-
tions and simplifications. It should be kept in mind that some
ensemble updating procedures used to derive posterior distribu-
tions from sampled prior distributions may be suboptimal for non-
linear problems. Nevertheless, these approximate methods are
typically much more computationally feasible than other sampling
methods (such as MCMC) that make fewer approximations (but are
still suboptimal due to finite sample sizes and slow convergence).
This is especially true when the model of interest is computation-
ally demanding.

Examples of efficient but approximate alternatives to MCMC
include the ensemble Kalman filter and related ensemble smooth-
ing algorithms (Evensen, 1992, 1994). These algorithms have been
used for data assimilation in oceanic models (Evensen and van
Leeuwen, 1996; Houtekamer and Mitchell, 1998), meteorological
forecasting (Houtekamer and Mitchell, 2001), soil moisture inves-
tigations (Reichle et al., 2002), snow data analysis (Slater and Clark,
2004), and parameter updating in hydrological models
(Moradkhani et al., 2005; Chen and Zhang, 2006).

The ensemble Kalman filter (EnKF) is a sequential algorithm
that derives an ensemble of updated parameter values at the cur-
rent time from a linear combination of the current measurement
and an ensemble of model forecasts initialized at the previous
update time. The weighting between the measurement and fore-
cast ensemble depends on covariances between these quantities.
In the EnKF the forecast ensemble implicitly defines a Bayesian
prior distribution while the updated ensemble implicitly defines
a Bayesian posterior distribution. The original form of the EnKF
requires the current measurement to be perturbed with a random
term that has the statistical properties assumed to apply to the

actual (but unknown) measurement error. Square Root Filters
(SRF) were introduced, in part, to avoid the need for such perturbed
observations (Whitaker and Hamill, 2002; Tippett et al., 2003;
Evensen, 2004; Sakov and Oke, 2008). The SRF method updates
the posterior mean and square root of posterior covariance of the
parameters separately. Livings et al. (2008) provides a generic set
of necessary and sufficient conditions for the SRF to yield an unbi-
ased state estimate.

When the EnKF or SRF are used to assess the uncertainty of
time-invariant parameters, such as aquifer hydraulic conductivi-
ties, the updated parameter and state ensembles change at each
measurement update. The complete set of measurements is incor-
porated only at the final time of the historical period. In this case,
the samples of the states obtained by inserting the posterior
parameter samples into the model are different from the corre-
sponding samples obtained from the Kalman filter. This is because
the Kalman filter posterior state samples computed at a given time
depend only on measurements obtained at or before this time
while the smoother samples depend on all the measurements.
Also, the sequential filter update requires that the forecasting
model be stopped, reinitialized, and restarted at each measure-
ment update. These difficulties can be resolved by using a version
of the ensemble smoother (ES) proposed by van Leeuwen and
Evensen (1996). The smoother updates the parameters and states
simultaneously using all observations, without stopping and
restarting the numerical model. The ES typically runs faster than
the EnKF but can give less accurate posterior distributions when
the states are nonlinear functions of the parameters (Emerick
and Reynolds, 2012; van Leeuwen and Evensen, 1996). The differ-
ent computational time required in the two methods occurs
mainly because the EnKF requires additional time to restart model
simulations. Examples of computation time differences observed
for the two methods can be found in Emerick and Reynolds
(2012). Bailey et al. (2012) applied ES to a more complicated agri-
cultural aquifer-canal-stream example. However, in hydrology the
ES has been applied primarily to synthetic cases or relatively sim-
ple examples (Dunne and Entekhabi, 2005; Bailey and Bau, 2010,
2012; Emerick and Reynolds, 2012). Generally speaking, the EnKF
has been more popular for real-world applications, despite the
conceptual limitations and inconsistencies that arise when it is
used to assess uncertainty in time-invariant parameters.

Emerick and Reynolds (2012) developed an improved version of
the ES, which they call an Ensemble Smoother with Multiple Data
Assimilation (ESMDA). The ESMDA is an iterative smoothing algo-
rithm that takes an approach that differs from either the ensemble
Kalman filter or the traditional ensemble smoother. On each itera-
tion of the algorithm the parameter ensemble is updated with all
measurements at once, rather than sequentially. The state predic-
tion ensemble for the current iteration is derived by running the
forecast model for the entire data period with the current param-
eter values. This gives a predicted state ensemble that is consistent
with the parameter ensemble, overcoming the EnKF inconsistency
mentioned above. In this respect ESMDA is similar to the ES.
However, in the ESMDA the entire smoothing process is repeated
for several iterations until the parameter samples and associated
state forecasts converge. The measurement noise covariance is
adjusted between iterations to compensate for the reuse of the
same data. Emerick and Reynolds (2012) show that this adjust-
ment process is optimal for linear smoothing problems and a good
approximation for some nonlinear problems.

Since the ESMDA is a relatively new method it has not yet been
applied to complex hydrological models. This paper investigates
the application of ESMDA in an uncertainty assessment of a com-
putationally intensive distributed flow and transport model of
the Yanqi Basin of Northwest China. We consider both the original
version of ESDMA, which uses perturbed observations similar to
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