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a b s t r a c t

We present a method for producing analytic elements of a smooth shape, obtained using conformal map-
ping. Applications are presented for a case of impermeable analytic elements as well as for head-specified
ones. The mathematical operations necessary to use the elements in practical problems can be carried out
before modeling of flow problems begins. A catalog of shapes, along with pre-determined coefficients
could be established on the basis of the approach presented here, making applications in the field straight
forward.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The analytic element method is based on the superposition of
analytic functions, each representing a certain feature in an
aquifer. Some of these elements consist of lines that can be com-
bined to model such features as impermeable boundaries, rivers,
lake boundaries, fractures, or boundaries of inhomogeneities.
More advanced analytic elements represent an entire feature, such
as a lake, an impermeable boundary, or an inhomogeneity.
The analytic elements all possess degrees of freedom that can be
determined to meet boundary conditions, often to within machine
precision.

Advanced analytic elements have been created for a variety of
purposes. Line elements (Strack and Haitjema, 1981a; Strack and
Haitjema, 1981b; Strack, 1989; Janković and Barnes, 1999);
curvilinear elements (Strack, 1989; Steward et al., 2008), circular
analytic elements, (Barnes and Janković, 1999), and analytic ele-
ments with elliptic boundaries (Strack, 1989; Suribhadla et al.,
2004; Strack, 2005), have been developed. These elements have
been applied to solve practical problems of groundwater flow,
e.g., Bakker et al. (1999). A different application of advanced

analytic elements is to create a numerical laboratory which makes
it possible to study phenomena such as contaminant transport and
research into equivalent hydraulic conductivity (Janković et al.,
2003; Janković et al., 2006).

We may divide analytic elements applicable to the Laplace and
Poisson equations in two groups; the first group consists of straight
or curvilinear line-elements that can be combined to form open or
closed strings of elements. The second group consists of elements
bounded by closed contours, such as circles and ellipses. We pre-
sent elements in this paper that are closed and can be constructed
to include a variety of shapes; their construction is based on con-
formal mapping. We apply the elements to model impermeable
boundaries as shown in Fig. 1, and boundaries with constant head,
i.e., the elements that represent water bodies where either the
discharge or the head is prescribed, see Fig. 7. The analytic
elements can also be used to model inhomogeneities in hydraulic
conductivity, following the approach outlined in Strack (1989),
but this application is not included in this paper.

The approach makes use of the function that maps conformally
the upper half plane onto the exterior of a slot with two legs of
finite length as shown in Fig. 2. The slot is then modeled as an
equipotential that captures flow from infinity. The shape of the ele-
ment is chosen from the family of equipotentials that surround the
slot. The angle between the legs, the ratio between the lengths of
the legs, the angle between one of the legs and the x-axis, and
the head along the chosen equipotential are the parameters that
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control the shape of the analytic element. Note that the analytic
element reduces to the slot itself, when the equipotential
representing the slot is chosen as the boundary of the element.
Such an analytic element, or an analytic element formed by the
equipotential close to the slot, may be used to model a fracture.

2. Mapping If P 0 onto the exterior of the slot

An example of a two-legged slot in the physical plane z ¼ xþ iy
is shown in Fig. 2. We define the dimensionless complex variable Z
as

Z ¼ z
L

ð1Þ

where L is the length of the longest of the two legs. We number the
various points of the domain in the Z-plane as 1, 2, 3, and 4. Points 1
and 3 are at the origin, but on different sides of the slot. Points 2 and
4 are the end points of the two legs. We map the upper half plane
If � 0 onto the exterior of the slot in such a way that infinity cor-
responds to point 1, and f ¼ n3;In3 ¼ 0, to corner point 3. Points 2
and 4 do not enter into the transformation; only points at the origin
or infinity do. Point f ¼ i corresponds to infinity in the z-plane. The
locations of points on the real axis If ¼ 0 that correspond to points
2 and 4 are determined later; we label the coordinates of these
points as n2 and n4.

The function that maps the upper half plane shown in Fig. 2b
onto the slot in Fig. 2a is given by the transformation of piecewise
constant argument, see, e.g., Koppenfels and Stallmann (1959),
Polubarinova-Kochina (1977), Strack (1989)

Z ¼ jAjeia0
ðf� n3Þa=p

ðfþ iÞðf� iÞ ð2Þ

where jAj controls the size of the element, and a0 is given by its
orientation. If only a single element were considered, the angle a0

could be left out, but since analytic elements are designed to be
superimposed, the orientation of the individual elements must be
included. The constant a represents the angle between the slots
as indicated in Fig. 2. The parameter n3 is real; its value depends
on the ratio of the lengths of the legs of the slot. The function (2)
has poles of the first order at both f ¼ i and f ¼ �i. Only the pole
at f ¼ i lies in the upper half plane; it corresponds to infinity in
the Z-plane. The pole f ¼ �i lies in the lower half plane; it does
not correspond to a point in the physical plane. The function (2)
contains two parameters: jAj and n3, which are determined from
both the ratio of the lengths of the two legs and the scale. The angle
a0 is the angle between leg 3-4-1 and the x-axis, and a is the angle
between legs 4-3 and 3-2, see Fig. 2. The denominator of the
mapping function is real and positive for real values of f; it repre-
sents the square of the modulus of f� i. We show that the mapping
function (2) indeed maps the upper half plane onto the Z-plane.

We have f ¼ n P n3 along section 3-4-1; recall that n3 is the
value of f ¼ n at point 3. The argument of the function Z ¼ ZðfÞ is
equal to a0 along 3-4-1, which means that Z indeed represents a
point on that slot. Point 1 corresponds to infinity in the f-plane
and the mapping function indeed vanishes for f!1. The
argument of f� n3 is p along 1-2-3; the argument of the mapping
function is a0 þ a along that section, which is again as desired.

The derivative of the mapping function, Z ¼ ZðfÞ, with respect to
f is zero at the end points of the legs, points 2 and 4; the direction
of the increment dZ in the derivative dZ=df changes while the
increment df remains positive as the point f travels along the real
axis in positive direction, which results in a change of sign. We
determine the logarithmic derivative of the mapping function by
differentiating the logarithm of Z with respect to f, which gives

ln Z ¼ ln jAj þ ia0 þ
X3

m¼1

jm lnðf� fmÞ ð3Þ

where

f1 ¼ i f2 ¼ �i f3 ¼ n3 ð4Þ

and

j1 ¼ j2 ¼ �1 j3 ¼
a
p

ð5Þ

The derivative of this function with respect to f is

d ln Z
df
¼ Z0ðfÞ

ZðfÞ ¼
X3

m¼1

jm

f� fm
¼ �1

f� i
� 1

fþ i
þ a

p
1

f� n3
ð6Þ

The function ZðfÞ is unequal to zero at points 2 and 4, where
Z0ðfÞ is zero; we find the zeros of the derivative of the mapping
function by setting (6) equal to zero

a
p
ðf2 þ 1Þ � ðf� n3Þ½fþ iþ f� i� ¼ 0 ð7Þ

The two roots of this quadratic equation are

f1;2 ¼ l1;2 ¼
n3

2� a=p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3

2� a=p

� �2

þ a=p
2� a=p

s
ð8Þ

Fig. 1. Five impermeable objects in a field of uniform flow.

Fig. 2. The slot in the z-plane (a) and the upper half f-plane (b).
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