
A general approximate method for the groundwater response problem
caused by water level variation

Qinghui Jiang a,b,⇑, Yuehao Tang a

a School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
b School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, PR China

a r t i c l e i n f o

Article history:
Received 8 March 2015
Received in revised form 24 June 2015
Accepted 20 July 2015
Available online 4 August 2015
This manuscript was handled by Corrado
Corradini, Editor-in-Chief, with the
assistance of Rao S. Govindaraju, Associate
Editor

Keywords:
Boussinesq equation
Unconfined aquifer
Moving boundary
Approximation method

s u m m a r y

The Boussinesq equation (BEQ) can be used to describe groundwater flow through an unconfined aquifer.
Based on 1D BEQ, we present a general approximate method to predict the water table response in a
semi-infinite aquifer system with a vertical or sloping boundary. A decomposition method is adopted
by separating the original problem into a linear diffusion equation (DE) and two correction functions.
The linear DE satisfies all the initial and boundary conditions, reflecting the basic characteristics of
groundwater movement. The correction functions quantitatively measure the errors due to the degener-
ation from the original BEQ to a linear DE. As the correction functions must be linearized to obtain ana-
lytical solution forms, the proposed method is an approximate approach. In the case studies, we apply
this method to four different situations of water level variation (i.e., constant, sudden, linear and periodic
change) resting on vertical or sloping boundaries. The results are compared against numerical results,
field data and other analytical solutions, which demonstrate that the proposed method has a good accu-
racy and versatility over a wide range of applications.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater flow in an unconfined aquifer can be modeled by
the nonlinear Boussinesq equation (BEQ). The solutions of the BEQ
predict the responseof thegroundwater table inanunconfinedaqui-
fer due to stream water variations and quantify the exchange flow
between the stream and aquifer. The results are useful in situations
suchas slopestability, irrigation,drainageandcatchmenthydrology.

Of special interest are groundwater flow and bank storage
effects caused by changes in water elevation in free water bodies
adjacent to the aquifer (Govindaraju and Koelliker, 1994). The sit-
uations of water level variation depend on many factors, such as
the geometry of stream cross-section, characteristics of the drai-
nage basin, time–space variation of storms, snowmelt and rainfall
runoff. Analytically solving such problem can provide insights into
the physical processes of water recharging and dewatering
(Lockington et al., 2000; Song et al., 2007; Basha, 2013;
Workman et al., 1997; Ostfeld et al., 1999; Liang and Zhang, 2012).

The difficulties in obtaining analytical solutions for groundwa-
ter table response problem are from three aspects. The first is that
variable water heights make the boundary condition dynamic. To

obtain analytical solutions, the original problem was simplified
to linearized models with vertical interfaces. For instance, for the
problem in an infinite region, Govindaraju and Koelliker (1994)
and Basha (2013) assumed a general mode of water level variation,
and Parlange et al. (2000) adopted a special function for describing
water variation so that his polynomial solution can be matched.
Song et al. (2007) and Lockington et al. (2000) proposed their ana-
lytical solutions to the case in which water level varies by a power
function. Moutsopoulos (2013) and Teloglou and Rajeev (2012)
studied the cases where the boundary conditions are of the
Robin and Cauchy type, and the modes of water level variation
are also different. For the flow in a finite region, Kim and Ann
(2001) discussed a case with water heads fixed at both ends.
Workman et al. (1997) set up a model by assuming a head fixed
at one end but varying with respect to time at the other. Serrano
and Workman (1998) extended this model by allowing variable
heads at both ends.

The second difficulty is from the so-called moving boundary
effects (Li et al., 2000). When the water varies on a sloping bound-
ary, the heads acting on the slopes may vary along both the time
and space dimensions. The moving boundary effect increases the
nonlinearity of the BEQ, which leads to that the analytical solutions
are difficult to obtain. Nielsen (1990) was probably the first to
examine this problem. He obtained an analytical solution in a
study of aquifer response to ocean tides. However, his solution
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failed to satisfy the boundary condition precisely because the
assumption of a fixed location of the shoreline boundary condition
is relaxed. Li et al. (2000) revisited this case and addressed the
problem by using a coordinate transformation to convert the orig-
inal BEQ to an advection–diffusion equation. By using perturbation
method, both Nielsen’s and Li’s solutions are applicable in the case
of small water level fluctuations. Sun et al. (2011) and Zheng et al.
(2005) studied a moving boundary case with a constant speed of
water level variation. Zheng et al. (2005) simplified the sloping
boundary to a vertical case. By following Li’s coordinate transfor-
mation concept, Sun et al. (2011) obtained their approximate solu-
tions for predicting the groundwater table variation with a sloping
boundary. However, the approximate solutions are in the form of
upper and lower bounds of the exact solution. All those studies
are based on the linearized BEQ.

Third, to the authors’ knowledge, there is no general method
capable of handling the nonlinear BEQ problems, especially ones
associated with dynamic and moving boundary effects. The most
common method is through linearization, whereby the head func-
tion in the coefficients of BEQ is replaced by a constant character-
istic head (Govindaraju and Koelliker, 1994). The solutions of the
linearized equation are then obtained by various approximate
methods to achieve applicable results, such as perturbation meth-
ods (Parlange et al., 1984; Nielsen, 1990; Li et al., 2000; Teo et al.,
2003; Song et al., 2007; Roberts et al., 2011), Laplace transforma-
tion methods (Marino, 1975; Ostfeld et al., 1999; Rai and
Manglik, 1999; Akylas and Koussis, 2007; Bansal, 2012), weighted
residual methods (Lockington, 1997; Lockington et al., 2000), vari-
able separation methods (Workman et al., 1997; Kim and Ann,
2001), Boltzmann transformation and decomposition methods
(Chor et al., 2013) and decomposition method (Serrano and
Workman, 1998). Lacking generality, the above-mentioned meth-
ods would be more suitable for particular cases. More recently,
some promising analytical techniques have emerged, such as
Adomian’s decomposition (Moutsopoulos, 2013; Serrano et al.,
2007), the traveling wave solution (Basha, 2013), Homotopy
Perturbation Method (Ganji et al., 2011) and the Homotopy
Analysis Method (HAM) (Song and Tao, 2007). However, these
methods involve advanced mathematical theories that are unfa-
miliar to most engineers or earth scientists and their applications
are therefore somewhat limited.

This paper proposes a general approximate method to predict
aquifer response subject to water level variations in a free water
body. It is applicable to both the linearized and nonlinear BEQ.
This proposed method decomposes the original nonlinear PDE into
a linear diffusion equation (DE) and two nonlinear correction func-
tions. Satisfying the initial and boundary conditions, the DE has
analytical solution, reflecting the basic characteristics of ground-
water movement. The correction functions use its solution as the
basis to measure the errors caused by the reduction from the non-
linear BEQ to a linear DE. Because the correction functions are non-
linear PDEs, they must be linearized to obtain the approximate
analytical solutions. Thus, the proposed method is an approxima-
tion approach.

The paper is organized as follows. Focusing on a semi-infinite
aquifer with a sloping interface, we give mathematical descriptions
of the groundwater response caused by variable water level in
Section 2. A general analytical method is proposed thereafter. In
Section 3, an adaptive finite volume method (FVM) is introduced
to solve the moving boundary problem. In Section 4, the proposed
analytical method is applied to four different situations of water
level variation (i.e., constant, sudden, linear and periodic change).
The solutions are compared to the numerical results from the
FVM and other analytical solutions to verify their validity.
Section 5 discusses the applicability conditions of the analytical
method. Conclusions are drawn in the final section.

2. Mathematical model and approximate solution

The BEQ describes the transient groundwater movement in an
unconfined aquifer. It reads as follows:

@h
@t

¼ K
S

@

@x
h
@h
@x

� �
ð1Þ

where h is the water depth above an impervious substratum [L]; K
is the hydraulic conductivity [LT�1]; S is the specific yield of the
aquifer; x is the horizontal coordinate [L]; and t is the time step
[T]. Eq. (1) does not include the effects of capillary action and
replenishment from the rainfall infiltration. The aquifer is assumed
to be homogeneous, so K and S are taken as constants.

The initial and boundary conditions are assumed as follows:

hðx;0Þ ¼ hi ð2Þ

hðXðtÞ; tÞ ¼ hi �
Z t

0
vðsÞds ð3Þ

hð1; tÞ ¼ hi ð4Þ
where hi (>0) is the initial height of the groundwater table; v(t) is
the velocity function of water level variation, assumed to be posi-
tive when reservoir water drops (i.e., Fig. 1a) and negative when
reservoir water rises (i.e., Fig. 1b); and X(t) is the position of the
moving boundary on the x axis, namely X(t) = [hi � s(t)] cot(h),

where h is the slope angle and sðtÞ ¼ R t
0 vðsÞds. For the water draw-

down condition, the effect of the seepage face is ignored.
Similar to Li et al. (2000), we introduce a new variable z = x � X(t).

Eqs. (1)–(4) can be restated as follows:

@h
@t ¼ K

S
@
@z ðh @h

@zÞ � vðtÞ � cotðhÞ @h
@z

hð0; tÞ ¼ hi � sðtÞ; hð1; tÞ ¼ hi; hðz;0Þ ¼ hi

(
ð5Þ

Eq. (5) is the mathematical description of groundwater move-
ment due to the water level variation on a sloping boundary. It is
nonlinear without an exact solution in general. If we let
a ¼ Khi=S, c ¼ K=S and substitute hi - d(z, t) - d(z, t) for h(z, t),
Eq. (5) can be decomposed as follows:

@d
@t ¼ að@2d

@z2Þ � vðtÞ � cotðhÞ @d
@z

dð0; tÞ ¼ sðtÞ; dð1; tÞ ¼ 0; dðz;0Þ ¼ 0

(
ð6Þ

and

@d
@t ¼ a @2d

@z2

� �
� c @

@z ðdþ dÞ @ðdþdÞ
@z

� �
� vðtÞ � cotðhÞ @d

@z

dð0; tÞ ¼ 0; dð1; tÞ ¼ 0; dðz;0Þ ¼ 0

(
ð7Þ

Eq. (6) is essentially the linearized form of Eq. (5) because the
head function h in the term h @h

@z is characterized by a constant head
hi. As the coefficient v(t) is a function, Eq. (6) is difficult to solve
analytically. Its solution may exist only under certain special con-
ditions, such as h is equal to p/2, or v(t) is a constant. Although
Eq. (6) is still mathematically nonlinear, we refer to it as the
linearized BEQ to distinguish it from the original Eq. (5).
Furthermore because Eq. (7) is the result of the degeneration from
Eqs. (5) and (6), it is called the head correction hereafter because
its role can be thought of as the compensation for the errors arising
from the linearization process.

2.1. The solution for the linearized BEQ

Substituting d1(z, t) + d2(z, t) for d(z, t) in Eq. (6), we can further
decompose it to a diffusion equation d1(z, t) and another correction
function d2(z, t). That is,
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