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s u m m a r y

Reservoir inflow forecasting is an integral element of hydropower systems operation and is of paramount
importance to hydropower producers. Effective forecasts directly impact power production scheduling,
which in turn effects the revenues earned from power production. In this study, we implement a filter
updating procedure (GU-COMP) that updates the gains on the error-forecasting component of a comple-
mentary forecasting framework (COMP) that also comprises a conceptual model with time invariant
parameters. The GU-COMP procedure is applied for forecasting hourly flows of the Krinsvatn catchment
(207 km2; located in Norway) over a forecast lead-time of 24 h. The gain coefficients are considered as the
only state variables and are updated daily using the error observed between measured and forecasted
flows at the catchment outlet. The performance is rated based on evaluation of filter performance (i.e.
convergence and consistency), and relative assessment of forecasting skills using the root mean square
error (RMSE) and the percentage volume error (PVE) metrics. Bracketing close to 95% of the innovation
sequences within two standard deviations from the mean, the filter is found to be well behaved. The
RMSE and PVE metrics agree that GU-COMP outperforms COMP in reducing the forecast errors, and sig-
nificantly altering distributional characteristics of the PVEs in the spring and summer seasons. It is also
noted that the relative forecast accuracy enhancement diminishes for forecast lead-times beyond 20 time
steps (hours).

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reservoir inflow forecasting deals with estimating the amount
of water that enters a given reservoir over a certain future time
also known as forecast lead-time. It is a crucial element of reservoir
operation planning and of paramount importance in maximizing
the revenues of the hydropower producers from power produc-
tions. Over the past decades, mathematical models have seen wide
range of applications in the field of hydrology, which includes use
for describing the hydrologic behaviour of the headwater area of a
reservoir. Despite numerous applications in real-life examples,
hydrologic models are far from being perfect and improving relia-
bility of the predictions has been important research topic.

Model updating has always been an indispensable tool of oper-
ational hydrologists ever since hydrologic forecasting began (Peck
et al., 1980). Refsgaard (1997) defines model updating as a feed-
back process of assimilating measured data into the forecasting
procedure before issuing a forecast. In the absence of formal

mathematical techniques for evaluating hydrograph errors and
implementing model updating, early forecasters employed the
art of visualization to examine the disagreement between the fore-
casted flows and the observations, and used expert judgment to
adjust some elements of the system subjectively in an effort
to update the forecasting system (Peck et al., 1980). According to
Houser et al. (2012), great strides towards successful application
of objective model updating, often referred to as data assimilation
(DA), techniques emerged as area of research in the science of
hydrology in the last few decades ensuing the advances in mea-
surement techniques that made possible arrival of more new
hydrologic observations. DA procedures enable integration of
recent measurements into the forecasting models when new
observations become available in real-time and lead to more accu-
rate hydrologic forecasts (cf. Georgakakos, 1995; Jønch-Clausen
and Refsgaard, 1984; Kachroo, 1992). Here we invite interested
readers to refer to Liu et al. (2012) for an extensive review of the
progresses, potentials and challenges made in hydrologic DA, and
to Moradkhani et al. (2012) for the latest theoretical advancement
in hydrologic DA.
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Based on whether the variables modified during the feedback
process correspond to the model inputs, model states, model
parameters or model outputs, WMO (1992) defines four DA meth-
ods. Recent works have forwarded procedures for estimating state
and parameters of a model jointly (e.g. Moradkhani et al., 2005a,b;
Wang et al., 2009). The way the updating techniques are applied
range from manual subjective trial and error approach (Ånund
Killingtveit, Pers. Comm., June 2011) to formalized mathematical
methods. These include recursive least square algorithms (e.g.
Madsen and Skotner, 2005), Kalman filtering technique and its
variant extensions (e.g. Ahsan and O’Connor, 1994; Canizaresab
et al., 1998; Madsen et al., 2003; Pauwels et al., 2013; Refsgaard
et al., 1983), variational data assimilation approach (e.g. Seo
et al., 2003), and sequential Monte Carlo methods (e.g. Evensen,
1994; Moradkhani et al., 2005a). Depending on the manner the
updating is conducted, these mathematical techniques belong to
either variational or sequential DA methods (Drécourt, 2004).
Variational DA methods operate in a batch-processing manner
and have considerable computational cost as all available observa-
tions until the present time are used. Whereas sequential DA
methods update the variables of interest in a sequential manner
using only the most recent new observations. Sequential DA tech-
niques suit themselves for undertaking hydrologic forecasting
problems, which necessitate working with both past and future
data, and are fast becoming the most popular approach to over-
come the challenges hydrologist face in operational forecasting
problems (e.g. Madsen and Skotner, 2005; Refsgaard, 1997).

The three features that determine quality of a hydrologic forecast
(Moll, 1983) are the information about the system’s past (right at the
forecast issuing time), the amount of the future inputs into the sys-
tem, and the description of the water movement in the system over
the forecast horizon. DeChant and Moradkhani (2015) assert that
enhancing performance of a forecasting system directly relates to
reducing uncertainties in either the initial condition of the system,
climate forcing or the forecasting model. Of these three sources of
uncertainty, the extensive research the hydrologic community con-
ducted in the last few decades primarily attempted to boost reliabil-
ity of hydrologic forecasts by addressing uncertainty in modelling
and model parameterization. This has led to formulation and imple-
mentation of various modelling concepts/approaches (Beven, 2012;
Todini, 2007); calibration techniques (e.g. Boyle et al., 2000; Duan
et al., 1992); uncertainty assessment methods (e.g. Ajami et al.,
2007; Beven and Binley, 1992; Clark et al., 2008; Kavetski et al.,
2003; Renard et al., 2010; Vrugt et al., 2008); and data assimilation
(updating) techniques (e.g. Liu et al., 2012; Moradkhani and
Sorooshian, 2008; Weerts and El Serafy, 2006). The other two
sources of uncertainty (i.e. initial condition of the system and cli-
mate forcing) appear to be receiving attention recently. The initial
state of a system summarizes the entire past and enables calculation
of future responses of the system without reference to the historic
inputs and outputs (Jayawardena, 2014). Among others, Wood and
Lettenmaier (2008) Li et al. (2009), Shukla and Lettenmaier (2011),
Yossef et al. (2013) characterize the relative contributions of the ini-
tial states and the climate forcing for improving skills of seasonal
streamflow forecasting systems using ensemble-based approaches.
They report that the initial state of the system plays important role
on short-term streamflow forecasting even though the degree of
influence varies across seasons, locations, and hydrometeorologic
characteristics of the study areas. DeChant and Moradkhani (2011)
demonstrate the role of DA in representing accurately the total sea-
sonal flow uncertainty in snow dominated basins through initializa-
tion and characterization of the uncertainty in the initial states of the
system.

However, implementation of the above methods in operational
forecasting system is very limited (DeChant and Moradkhani,
2011). Challenge related to constructing the natural time lag

between the variable to be updated and the flow observations
(e.g. McMillan et al., 2013) is one factor limiting the use of DA tech-
niques in operational hydrology. Other factors that hampered
application of DA techniques operationally include computational
burden and lack of mechanisms for objectively quantifying errors
emanating from different uncertainty sources. The preferences of
operational hydrologists to adhere to the current familiar models,
which they can update manually is another issue worth mention-
ing. Liu et al. (2012) emphasize the need for DA research to
undergo transition into delivering recognized operational tools.
With this spirit, the current paper presents an effort being made
by consortium of Norwegian hydropower companies and regula-
tors to employ DA methods for improved short-term reservoir
planning with the Elspot (a day-ahead) market of the Nordic
exchange market as the centre of interest. The work presented in
this paper attempts to mimic the normal operational practice in
the Norwegian hydropower industry, which has long been framed
to take the requirements for trading power in the day ahead
market (Elspot) into consideration. The main features of the
operational tradition emulated in this paper include issuing of
forecasts before 12:00 CET and defining forecast window of
24 hourly time steps (12:00 CET to 11:00 CET next day).

In this study, we apply DA methods for improving skill of a fore-
casting system without assimilating data into the hydrologic
model. Liu et al. (2012) describe that error-forecasting procedures
improve forecasts by informing the forecasting system the future
discrepancy between the model forecasts and future observations.
The DA procedure we implement combines error forecasting with
filtering and enhances the skills of a hydrologic forecasting model
using the complementary modelling framework presented by
Gragne et al. (2014). This complementary framework consists the
semi-distributed conceptual model HBV (Bergström, 1995) and
an autoregressive (AR) error model. The conceptual model
represents the operational processes model whose parameters
are unaltered throughout. The modelling framework identifies
the order and structure of the AR model by making use of the bias,
persistence and heteroscedasticity the residual series from the
conceptual model exhibits.

The feedback process we set up on top of the complementary
forecast system updates the error model using measured inflow
data on a periodic basis without assimilating the data into the con-
ceptual forecasting model. The extra information the most recent
measurements provide serves to improve model forecast accuracy
and constrain forecast uncertainty by updating the state of the
error-forecasting model. In this paper, we introduce a multiplica-
tive factor termed as ‘‘gain coefficient’’ as the only state of the error
model. The gain coefficient (gain) is time variant and is updated
continuously every 24 h. The main advantage of combining the
updating procedure with the mentioned forecasting system is to
extend the forecasting skill of the complementary framework
way beyond the time horizon where the influence of the initial
conditions of the hydrologic forecasting model are washed out
(e.g. Madsen and Skotner, 2005). The most important feature of
the present work is its attempt to improve reservoir inflow fore-
casts of an hourly model over a forecast lead-time of 24 h, on the
basis of operational needs. It also suggests reducing the computa-
tional cost of DA by applying a DA technique on a simple error
model for a deterministic forecasting system, which represents
operational forecasting practice (e.g. Smith et al., 2012). The main
objectives of the study are: (i) to improve accuracy of operational
inflow forecasts at extended lead-times by recursively updating
the error model; and (ii) to explore the potential of DA techniques,
which combines a simple filtering procedure with a simple
error-forecasting model in an operational setup without interfer-
ing with the operation of the conceptual model. In this study, we
employ an adaptive Kalman filtering procedure (Almagbile et al.,
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