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a b s t r a c t

One-dimensional (1-D) numerical models of solute transport in streams rely on the advection–dispersion
equation, in which the longitudinal dispersion coefficient is an unknown parameter to be calibrated. In
this work we investigate the extent to which existing empirical formulations of longitudinal dispersion
coefficient can be used in 1-D numerical modelling tools of solute transport under steady and unsteady
flow conditions. The 1-D numerical model used here is the open source Mascaret tool. Its relevance is
illustrated by simulating theoretical cases with known analytical solutions. Ten empirical formulas of
longitudinal dispersion coefficient are then tested by simulating eight laboratory experimental cases
under steady flow condition and the solute transport in the Middle Loire River (350 km long) under
highly variable flow condition (from July 1st 1999 to December 31st 1999). Comparisons between com-
puted and measured breakthrough curves show that Elder (1959), Fischer (1975) and Iwasa and Aya
(1991) formulas rank as the best predictors for the experimental cases. For the field case, Seo and
Cheong’s (1998) formula yields the best model-data agreement, followed by Iwasa and Aya’s (1991) for-
mula. The latter formula is, therefore, recommended for the entire range of conditions studied here.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ability to predict the transport of contaminants in open
channels is a major topic in many industrial and environmental
projects, ranging from accidental release of pollutant to the trans-
port of non-point sources. Solute transport is governed by a suite of
hydraulic and geochemical processes, such as mixing, exchange
with storage zones and biogeochemical reactions. Molecular diffu-
sion, turbulent diffusion and shear dispersion are the fundamental
mixing processes in open channels (Boxall and Guymer, 2007).
Dispersion in longitudinal, lateral and vertical directions accounts
for the effects of spatial differences in velocities (either primary
or secondary) over the channel cross-section (Rutherford, 1994).
Resolution of the equations that govern solute transport is difficult
to achieve especially for field cases under unsteady flow condi-
tions. Analytical solutions have been proposed for idealized cases,
such as steady flow and instantaneous injection in prismatic open

channels (De Smedt, 2006; Hunt, 2006). The application of these
solutions to field cases is, however, questionable.

Numerical models have been employed in engineering studies
to predict the travel time and concentration of pollutants. Several
1-D models have been proposed and every model has its advan-
tages and limitations (Cox, 2003). The use of these models requires
the hydraulic conditions are correctly simulated and the Fickian
assumption is valid (i.e. effects of velocity shear are balanced by
effects of diffusion, usually dominated by turbulent mixing)
(Leibundgut et al., 2009). The development of 1-D models has
focused mainly on numerical aspect of the advection–dispersion
equation (Russell and Celia, 2002; Rubio et al., 2008; Shen and
Phanikumar, 2009) and exchange with dead zones (Bencala and
Walters, 1983; Wörman et al., 2002; Anderson and Phanikumar,
2011). Some 1-D models are limited to steady flow conditions
(e.g. SIMCAT (UK Environment Agency, 2001), QUAL2KW
(Pelletier et al., 2006), Multiphysics software COMSOL (Ani et al.,
2009)), while other models simulate unsteady flows and solute
transport (e.g. OTIS (Runkel, 1998), CCHE1D-WQ (Vieira, 2004),
MIKE 11 (DHI, 2007), SD model (Deng and Jung, 2009), HEC-RAS
(USACE, 2010), ADISTS (Launay et al., 2015)). Generally, validation
testing has focused on theoretical cases or simplified river geome-
tries in limited space and time scales (Zerihun et al., 2005).
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All 1-D solute transport models rely on the advection–disper-
sion equation, which brings the longitudinal dispersion coefficient,
DL, as unknown parameter to be determined. This coefficient mea-
sures the intensity of longitudinal dispersion, which is the primary
mechanism that is responsible for reducing peak concentrations
once the cross-sectional mixing is complete (Chen et al., 2009).
In most numerical models, DL is assumed to be time and space
invariant, and estimated with field tracer experiments, with values
varying within a range of 10�1–107 m2/s (Seo and Cheong, 1998).
Field tracer studies can be expensive and time-consuming, espe-
cially for large rivers (Shen et al., 2010; Kim, 2012), and the disper-
sion coefficient estimate is valid for only the stream reach
examined and the set of hydraulic conditions during which the tra-
cer experiment was conducted. Therefore, water quality modellers
often use semi-analytical and empirical formulations, relating DL to
flow and channel properties. Most formulas were derived from dif-
ferent assumptions and tested using laboratory and field data sets,
and when applied to one study case the estimated dispersion coef-
ficients for the different formulas may vary over several orders of
magnitude (Rutherford, 1994). Performance of formulations has
been usually assessed by comparing calculated and measured dis-
persion coefficients (Tayfur and Singh, 2005; Sahay, 2011;
Etemad-Shahidi and Taghipour, 2012; Zeng and Huai, 2014), with
the measured values being deduced from the observed transverse
velocity profiles using the volume integral expression (Deng
et al., 2001; Seo and Baek, 2004) or from the temporal concentra-
tion profiles using statistical approaches such as moments method
(Ho et al., 2002; Zhang et al., 2006) and Chatwin method (Chatwin,
1980). Only some authors investigated the accuracy of selected for-
mulas by comparing numerically calculated breakthrough curves
with measurements (Kashefipour and Falconer, 2002; Ani et al.,
2009). However, they solved the advection–dispersion equation
assuming averaged flow variables in the river, which requires the
flow to be steady and the bed geometry to be prismatic. The
application of longitudinal dispersion coefficient formulas to
geometrically non-uniform channels and unsteady flow conditions
is therefore still needed.

In this work we make a step forward and investigate the suit-
ability of dispersion coefficient formulas in 1-D modelling of solute
transport under steady and unsteady flow conditions. In contrast

to many works published in the literature, the performance of each
formula is assessed in the current paper by comparing the calcu-
lated breakthrough curves of concentration with measurements.
We restrict our attention to non-reactive solutes. We use the
Mascaret code, which is the 1-D component of the open source
Telemac-Mascaret system developed at EDF-R&D (www.open-
telemac.org The code incorporates dispersion coefficient formulas
proposed by Elder (1959) (noted hereafter E), Fischer (1975) (F),
McQuivey and Keefer (1974) (M&K), Liu (1977) (L), Iwasa and
Aya (1991) (I&A), Magazine et al. (1988) (M), Koussis and
Rodriguez-Mirasol (1998) (K&R-M), Seo and Cheong (1998)
(S&C), Deng et al. (2001) (D) and Kashefipour and Falconer
(2002) (K&F).

The remainder of the paper is set out as follows: Section 2 pre-
sents the modelling framework. A brief background to the investi-
gated dispersion coefficient formulas is provided in Section 3. In
Section 4, the performance of the formulas is assessed using eight
laboratory experimental cases under steady flow. In Section 5, for-
mulas are applied for simulating solute transport along the 350 km
of the Loire River (France) over the period July 1st 1999 to
December 31th 1999. A discussion is given in Section 6, followed
by conclusions in Section 7.

2. Formulation of the problem and numerical scheme

The description of the modelling tool given herein is brief.
Mascaret has been extensively applied for simulating flow propaga-
tion in open channels, through the framework of the EU-project
CADAM (Goutal, 1999), and solute transport through the
IAEA-project EMRAS (Goutal et al., 2008). However, the pure
advection term of the solute transport equation was solved by
the method of characteristics. In all numerical runs (i.e. experimen-
tal and field cases), we use a second order finite volume scheme
(FV2). Its relevance is demonstrated hereafter using two theoreti-
cal cases.

2.1. Basic equations for flow

Based on the hydrostatic pressure distribution and incompress-
ible flow assumptions, the flow hydrodynamics is represented by

Nomenclature

A wetted area
B channel width
C concentration of solute in the flow;
Cp peak concentrations
Cl lateral inflow solute concentration per unit length
DL longitudinal dispersion coefficient;
F Froude number
F flux vector = [Q, Q2/A + gI1]T

g gravitational acceleration
H flow depth
I1 hydrostatic pressure force term
I2 pressure force due to the channel walls contractions and

expansions
Ks Manning–Strickler’s coefficient
Q flow discharge
ql lateral flow discharge per unit length
Re Reynolds number
Rh hydraulic radius
R2 correlation coefficient
s other point sources besides the lateral inlet solute
S a source term of the solute = s + Clql

S source term = [ql, gA(S0 – Se) + gI2]T

Se energy slope
S0 longitudinal bed slope
t time
Tp time to peak
T0 time of starting application
U conservative hydraulic variables = [A, Q]T

V flow velocity
V⁄ shear velocity
x longitudinal coordinate
y lateral coordinate
z vertical coordinate
zb bed elevation
DCp mean relative error of concentration
DCp mean relative error of peak concentration
Dt time step
DTp mean relative error of phase
Dx space step
q density of water
et transverse mixing coefficient
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