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s u m m a r y

Influential data are those that have a disproportionate impact on model performance, parameters and/or
predictions. This paper evaluates two classes of diagnostics that identify influential data for hydrological
model calibration: (1) numerical ‘‘case-deletion’’ diagnostics, which directly measure the influence of
each data point on the calibrated model; and (2) analytical diagnostics based on Cook’s distance, which
combine information on the model residuals with a measure of the distance of each input point from the
centre of the range of the input data (i.e., the leverage). Case-deletion methods rank influence by changes
in the model parameters (measured through the Mahalanobis distance), performance (using objective
function displacement) and predictions (e.g. mean and maximum streamflow). For the analytical meth-
ods, both linear and nonlinear estimates of leverage are used to calculate Cook’s distance, which is used to
rank influential data. We apply these diagnostics to three case studies and show that a single point could
change mean/maximum streamflow predictions by 7%/9% for a rating curve model, and 13%/25%, for a
hydrological model (GR4J) in an ephemeral catchment. In contrast, the influence was far less for GR4J
in a humid catchment (0.2%/2.3%). Assuming the data are of high quality this indicates deficiencies in
the ability of the GR4J model structure to reproduce the flow regime in the ephemeral catchment. The
linear Cook’s distance-based metric produced reasonably similar rankings to the case-deletion metrics
at a fraction of the computational cost (300–1000 times faster), but with less flexibility to rank influence
using specific aspects of model behaviour. The nonlinear distance produced rankings that were virtually
the same as the case-deletion metrics for all case studies – this highlights the importance of its use for
nonlinear hydrological models. Visual assessment was not a reliable method of influence analysis as there
was no direct relationship between the most influential data and the highest observed streamflows. The
findings establish the feasibility and importance of including influence detection diagnostics as a
standard tool in hydrological model calibration.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The process of hydrological model calibration involves the esti-
mation of parameters that maximise the similarity between
observed and simulated hydrological response time series such
as streamflow. This process requires the optimisation of one or
several objective functions (Duan et al., 1992), which provide a
summary measure of overall model performance. However in
doing so, information on the influence of individual data points
in determining the calibrated parameter set (and hence the model
predictions) is often ignored.

Identifying data points that have a large influence on hydrolog-
ical predictions is of particular importance when those data points

are erroneous, as this is likely to lead to sub-optimal model perfor-
mance when applied to an independent dataset. The importance of
such ‘‘disinformative’’ data has been highlighted by Beven and
Westerberg (2011), who identify the need for more formal meth-
ods to identify and remove erroneous data prior to model calibra-
tion. They suggest two strategies: firstly that the discrepancies of a
water balance time series are evaluated for values outside some
acceptable limits of uncertainty, and secondly that likelihood mea-
sures are developed that are robust with respect to disinformation.
However, examining all of the high residual data can be labour
intensive, and focusing only on a smaller subset of influential data
is likely to be more feasible in practice. Furthermore, not all influ-
ential points are erroneous; in fact, in certain situations it may
even be desirable that some data points are more influential than
others. For example, objective functions that place a larger weight
on high flows maybe more desirable if the application is for peak
flow prediction (e.g. Duan et al., 2007). This paper aims to provide
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hydrological modellers with the tools to assess relative influence of
data points on model calibration.

Influential data points are defined as points that exert a dispro-
portionate impact on the calibrated parameters, performance
and/or predictions. Formal influential point detection methods
are widely used both for the detection of erroneous points and
for identifying possible model deficiencies, with common applica-
tions in linear regression (Cook, 1979), generalised linear regres-
sion (Thomas and Cook, 1989), generalised additive models
(Hastie and Tibshirani, 1990) and various other regression-based
approaches (Chen et al., 2012; Russo et al., 2009). The diagnostics
can be grouped into two classes: case-deletion approaches and
analytical leverage-based approaches.

Case-deletion methods were first developed by Cook (1977) and
involve removing (‘‘deleting’’) a data point (‘‘case’’) from the set of
calibration points, and then recalibrating the model. Parameter
estimates and model predictions from the recalibration are com-
pared to the results from the full calibration, and this is repeated
for all data points in the calibration set. A recent example in the
context of flood frequency analysis used case-deletion to show that
low flow outliers can have a disproportionate influence on extreme
flood quantile estimates (Lamontagne et al., 2013). Their technique
was based on a generalised Grubbs-Beck test statistic developed by
Cohn et al. (2013) that is designed to identify potentially influential
low flows.

Case-deletion approaches can be computationally intensive, as
they require the re-estimation of the parameters after deleting
each point from the calibration data set. Furthermore, case
-deletion involves comparing the optimal parameter sets from
each calibrated model run, and thus anomalous results are possible
for models with complex response surfaces that are prone to local
optima (Duan et al., 1992). As an alternative, Cook’s distance (Cook,
1977) provides an analytical measure of the influence of points,
and thus does not require multiple re-calibrations. It combines
measures of the distance between each observed data point and
the fitted model (the residual) and the distance of each data point
from the centre of the input space (the leverage). Cook’s distance
was originally developed for linear regression models, but may also
be applied to nonlinear models if the models are approximately
linear in the vicinity of the optimum parameter set (Cook and
Weisberg, 1982). Alternatively, nonlinear formulations of the
leverage are also available (St. Laurent and Cook, 1992), and may
be better suited to the highly nonlinear behaviour of many hydro-
logical models (e.g. see discussion in Kavetski and Kuczera, 2007).

The influence concepts are illustrated in Fig. 1 by applying
case-deletion to a linear regression model. Point A is highly influ-
ential, with a significant difference in calibrated parameters when
including this point (b0 = 2.0, b1 = 2.3, compared to b0 = 3.4,
b1 = 1.9). The influence on predictions is also evident by comparing
the fitted regression lines, with the greatest differences apparent
towards the high and low extremes of the input data. In contrast,
although point B has a similar residual to A (i.e. the difference
between the data point and the fitted curve is similar), it exerts a
much smaller influence on both the parameters (b0 = 3.8, b1 = 1.9)
and the fitted regression line. Although the application of influence
diagnostics may appear trivial in this example, the complex map-
ping from input to output space in hydrological models often pre-
cludes visual techniques, so that more formal approaches for the
detection of influential points are required.

The prospect that a small number of data points can exert a very
high influence on model performance motivates the more wide-
spread implementation of influence diagnostics in hydrology, how-
ever applications have been few and recent. In the context of
groundwater modelling, Yager (2004) found that models were
highly sensitive to small changes in influential data. Foglia et al.
(2007) used a series of case-deletion metrics and Cook’s distance

approaches on a groundwater model and found similar perfor-
mance between the two metrics. Foglia et al. (2009) applied linear
Cook’s distance as part of a suite of diagnostics to a short time ser-
ies of 37 daily observations in the rainfall-runoff model TOPKAPI
and found that some of the low flow observations during small
precipitation events were more important than anticipated.
Legates and McCabe (1999) discuss the oversensitivity to outliers
of correlation based goodness-of-fit measures used in hydrological
models and recommend that additional evaluation measures
should supplement calibration. Berthet et al. (2010) found a quad-
ratic criterion to be influenced by a very small number of time
steps characterised with high runoff variation. Perrin et al. (2007)
assess the impact of the quantity and quality of streamflow data
on parameter calibration and model robustness and show that a
subset of influential points from a larger dataset are sufficient to
obtain robust estimates. Singh and Bárdossy (2012) pre-process
hydrological data using depth functions to identify unusual events
and investigate the calibration of the model with only this set of
critical data to assess if the subset has enough information to iden-
tify model parameters. Each of these studies contributes towards
the more widespread use of influence assessment, however a com-
prehensive assessment of the influence of individual data points in
the context of hydrological model predictions and parameters is
still lacking.

The goal of this paper is to evaluate the use of influence diag-
nostics in the context of common hydrological modelling case
studies: stage/discharge rating curve model and a conceptual
hydrological model. Case-deletion, linear and nonlinear Cook’s dis-
tance will be compared in terms of performance and computa-
tional run times. Tailored statistics that are suitable for
hydrological model applications will be developed for measuring
the effect of data points on the model parameters, performance
and/or predictions. This analysis will identify the extent to which
the model predictions are influenced by a small number of data
points – thereby evaluating the information content of data points

Fig. 1. A simple linear regression scatter plot illustrates the impact of a highly
influential data point on the fitted model. The solid line is the prediction curve
without point A or B in the calibration data; the broken prediction curve is with
point B only excluded, as A is an observation that is both an outlier and a high
leverage point; the dotted prediction curve is with point A only excluded, as B is an
observation with the same residual as point A but with low leverage.
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