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s u m m a r y

This study compares the scale-dependent variation in hourly Mean Areal Precipitation (MAP) derived
from a satellite (S) and a radar-gauge (R) Quantitative Precipitation Estimate (QPE), and seeks to explain
the S–R differences on the basis of errors in the satellite QPE. This study employs an analytical framework
to estimate the coefficient of variation (CV) of MAP for window sizes ranging from 4 km to 512 km, using
the rainfall fields of the CPC MORPHing (CMORPH) satellite QPE and a radar-gauge Multisensor QPE
(MQPE) over five domains centered in Texas, Oklahoma and New Mexico. CV values based on the analyt-
ical framework are first corroborated using empirical estimates. Then, S–R differences in CV are analyzed
to determine the contributions of the S–R differences from empirical fractional coverage (FC) and spatial
correlograms. Subsequently, sensitivity analyses are performed to isolate the impacts of false detections
and long-term, magnitude-dependent bias in CMORPH on the inaccuracies in FC and correlograms. The
results are stratified by domain and season (winter and summer) to highlight the impacts of differential
accuracy of CMORPH under diverse rainfall regimes. Our analyses reveal that CMORPH-based CV tends to
plateau at larger window sizes (referred to as critical window size, or CWS), and is broadly higher in mag-
nitude. The mechanisms underlying the CV differences, however, differ between winter and summer.
Over the winter, CMORPH suffers from severe underdetection, which yields suppressed FC across window
sizes. This underestimation of FC, together with the lack of resolution of internal rainfall structure by
CMORPH, leads to an magnification of both CWS and the magnitude of CV. By contrast, over the summer,
widespread false detections in CMORPH lead to inflated FC, which tends to suppress CWS but this effect is
outweighed by the opposing impacts of inflated outer and inner scales (i.e., distance parameters of indi-
cator and conditional correlograms). Moreover, it is found that introducing false detection to MQPE via a
simple expansion scheme is effective in increasing the FC and inner scale in tandem, and that histogram
differences are a rather minor contributor to the S–R difference in inner scale. The implications of the
findings for disaggregating climate model projection and data fusion are discussed.

Published by Elsevier B.V.

1. Introduction

Satellite-based Quantitative Precipitation Estimates (QPEs), for
their wide coverage and spatial continuity, have seen applications
in water budget analysis, flood forecasting, soil moisture predic-
tions and hydrologic model calibration for regions where ground
sensors are lacking or deemed inadequate (Scofield and
Kuligowski, 2003; Su et al., 2008; Tobin and Bennett, 2010;
Habib et al., 2012b; Zhang et al., 2013; Wu et al., 2014). Evolving
space-borne sensor technology and precipitation estimation

techniques promise further refinement in the spatio-temporal res-
olutions of Satellite-based QPEs (henceforth referred to as SQPEs)
and enhancements in their accuracy. For example, the recent
launch of the Global Precipitation Measurement (GPM, Kidd
and Huffman, 2011) satellite will refine the grid mesh of the
multi-satellite products from 1/4 degree to 10 km, and improve
their quality through cross-calibration of satellite sensors. Equally
notable is that several satellite QPEs (e.g., the Tropical Rainfall
Measurement Mission Multisatellite Precipitation Analysis, or
TMPA; Huffman et al., 2007) have accumulated relatively long
archives (>10 years), making them a potentially viable source of
climate information, especially where a long-term, high resolution
precipitation archive is absent.
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Of the many opportunities presented by the improving quality
and the expanding archive of SQPE data sets, yet to receive much
attention is the use of SQPE for quantifying the long-term, scale-
dependent temporal variability of Mean Areal Precipitation
(MAP). Such information has two immediate downstream utilities,
namely conditioning downscaled climate model outputs and fus-
ing precipitation products of differing resolutions. Statistical
downscaling of climate model projection, as pointed out in
Fowler et al. (2007), requires long-term precipitation climatology
for which variation on a subgrid scale is an important component
(see Wood et al., 2004; Maraun et al., 2010 for related comments).
To elaborate, inconsistency between the temporal variability rep-
resented by downscaled climate model outputs and that based
on observations could hamper the former’s application to the anal-
ysis and prediction of floods and droughts. This can be addressed
by adjusting the model-derived MAP so to match the variability
based on observations. As for data fusion, there is a potential of
blending a high resolution SQPE with coarser resolution gauge-
only analysis (e.g., the 2 by 2.5 degree National Weather Service
Climate Precipitation Center hourly Atlas No. 7; Higgins et al.,
2000) to yield a product that combines the strengths of each prod-
uct. For these applications, SQPE could be used to extrapolate the
variance of the coarser spatial resolution product to the finer, tar-
get resolutions.

These promising prospects notwithstanding, it needs to be
noted that SQPEs remain susceptible to large biases and random
errors in spite of their continuing improvements. Habib et al.
(2012b), for example, illustrated the large bias in the SQPEs pro-
duced via the CPC MORPHing (CMORPH) algorithm, one of the
most accurate products. Kuligowski et al. (2013) highlighted the
contribution of error in microwave to that of Self-calibrating Mul-
tivariate Precipitation Retrieval (SCaMPR) SQPE. Mei et al. (2014)
compared multiple SQPE products over mountainous basins and
found that none of them was ideal in capturing heavy precipitation
events. Despite these and related works dedicated to the evalua-
tion of satellite QPEs (Xie et al., 2007; Sapiano and Arkin, 2009;
Yilmaz et al., 2005; Bitew and Gebremichael, 2011; Tobin and
Bennett, 2010; Pan et al., 2010; Zhang et al., 2013), it is yet unclear
how these systematic and random errors in the SQPEs impact the
scale-dependent variability of MAP as portrayed by SQPE. The pres-
ent study serves precisely this purpose: it offers a dissection of the
differences in the coefficient of variation (CV) of MAP derived from
a SQPE and a high quality radar-gauge product, and it attempts to
link these inaccuracies of the errors in the former product.

The goals of this work are threefold. The first is to compare the
scale-dependent CV from CMORPH SQPE and the National Weather
Service multisensor QPE that is based on radar and gauge data.
Second, the work seeks to isolate the contributions of errors in
scale-dependent rainfall intermittency characterized by FC, and
those associated with spatial rainfall structure represented by spa-
tial correlograms to the differences in CV based on CMORPH and
MQPE (hereinafter referred to S–R difference, with S and R standing

for satellite and radar, respectively). Third, the study attempts to
quantify the impact of long-term bias and false rainfall detection
on the fractional coverage (FC) of positive precipitation and corre-
lograms. A unique aspect of this study lies in the use of an analytic
framework developed by Seo and Smith (1996) that allows for a
separation of impact of scale-dependent CV from FC and correlo-
grams. Such a breakdown further permits an analysis of the sensi-
tivity of CV to bias and false rainfall detection directly through
perturbation experiments. This study complements the aforemen-
tioned body of literature on SQPE accuracy by offering new insights
into the scale-dependent impact of SQPE inaccuracies on CV of
MAP and by addressing potential impact of the inaccuracies on
downscaled climate model outputs.

The remainder of the paper is organized as follows. Section 2
reviews the analytical framework of Seo and Smith (1996), and
describes the data and methods. Section 3 summarizes the results.
Section 4 discusses the results, and Section 5 presents the conclu-
sions and future works.

2. Data and methodology

2.1. Analytical framework

In this section, we review the analytical framework devised by
Seo and Smith (1996). Detailed derivations are omitted here and
interested readers are referred to the original paper.

Let Rðx; tÞ denote the hourly rainfall amount at location x and
hour t, where x is the location vector with x ¼ ðx1; x2Þ. Let M and
Z be the Mean Areal Precipitation (MAP) estimates and the FC of
positive precipitation for domain A, respectively; then

MðA; tÞ ¼ 1
jjAjj

Z
A

Rðx; tÞdx

ZðA; tÞ ¼ 1
jjAjj

Z
A

IRðx; tÞdx
ð1Þ

where jjAjj is the size of the domain A; IR is the indicator function
that assumes unity when R is greater than a prescribed threshold
and zero otherwise.

Of interest is the conditional expectation of positive hourly MAP
over domain A; E½MðA; tÞjMðA; tÞ > 0�. This is a long-term, climato-
logical quantity that is only a function of A and is independent of
time. Let us denote this quantity by mMðAÞ. With the assumption
of second-order stationarity of Rðu; tÞ within domain A;mMðAÞ can
be decomposed into the product of expectation of positive point
precipitation and that of fractional coverage:

E½MðA; tÞjMðA; tÞ > 0� ¼ E½RðtÞjRðtÞ > 0�E½ZðA; tÞjZðA; tÞ > 0� ð2Þ

Let mR ¼ E½RðtÞjRðtÞ > 0�, and mZðAÞ ¼ E½ZðA; tÞjZðA; tÞ > 0�. Let the
r2

MðAÞ denote the variance of positive MAP for A, i.e.,
r2

MðAÞ ¼ Var½MðA; tÞjMðA; tÞ > 0�. r2
MðAÞ characterizes the temporal

Acronyms

CMORPH CPC MORPHing
CV Coefficient of variation
CWS critical window size
FAR false alarm ratio
FC fractional coverage
GPM Global Precipitation Measurement
LI scale parameter for inner correlogram
Lo scale parameter for outer correlogram

MAP Mean Areal Precipitation
MPE Multisensor Precipitation Estimator
MQPE Multisensor Quantitative Precipitation Estimate
PMW Passive Microwave
QPE Quantitative Precipitation Estimate
SCaMPR Self-calibrating Multivariate Precipitation Retrieval
SQPE Satellite Quantitative Precipitation Estimate
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