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s u m m a r y

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed mor-
phology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial pro-
cesses is often impossible. To address the related uncertainties, we derive a stochastic fluvial process
model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river
velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topogra-
phy, river discharge and position of the river channel. In order to couple the velocity statistics and the
fluvial process model, the perturbation method is employed with a non-stationary spectral approach
to develop the Exner equation as two separate equations: the first one is the mean equation, which yields
the mean sediment thickness, and the second one is the perturbation equation, which yields the variance
of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers
resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rivers are one of the most dynamic external forces interacting
with and modifying the Earth’s surface. Sediment erosion and
deposition in rivers (fluvial processes) affect the geomorphic evo-
lution of land surface and basin stratigraphy. Various models have
been developed over the past decades to quantitatively describe
fluvial processes, including geostatistical models that mimic the
final results of fluvial processes statistically, and process-based
models that quantify the physics of fluid and sediment transport
(e.g. Koltermann and Gorelick, 1996; Paola, 2000; Van De Wiel
et al., 2011). Geostatistical methods predict unknown data by
interpolation based on probabilistic models inferred from mea-
sured data. These methods can be conditioned to the measured
information, but their applicability is often limited due to sparse
data. In contrast, process-based models which describe the
mechanics of fluvial processes can be used to simulate the

lithology distribution in the absence of measurements (Li et al.,
2004; Tetzlaff, 1990).

The Exner model is a classical process-based description of flu-
vial processes, which is based on a mass balance of sediment trans-
port in the river and sediment accumulation on the riverbed
(Exner, 1925; Leliavsky, 1955). It was generalized by Paola and
Voller (2005) to consider the influence of tectonic uplift and subsi-
dence, soil formation and creep, compaction and chemical precip-
itation and dissolution. For a wide range of specific problems, such
as short- or long-term riverbed evolution, a mass balance equation
can be extracted from the general Exner equation by combining
and dropping negligible terms.

Fluvial process models based on the general Exner equation are
widely used. Several types of such models are available. In the con-
vective model (Davy and Lague, 2009; Paola and Voller, 2005), the
sediment flux and accumulation at the position of interest is
assumed to be controlled by the upstream landscape features
and sediment input. The diffusion model (Paola et al., 1992;
Paola and Voller, 2005) simulates influences of both upstream
and downstream locations on the target positions. In addition,
the fractional model (Voller et al., 2012) accounts for non-local
upstream and downstream influences.
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In these fluvial process models (FPM), the flow velocity is the
key input parameter. The velocity can be resolved by a fluid
dynamics model (FDM) based on the Navier–Stokes equations
(e.g. Gonzalez-Juez et al., 2009; Necker et al., 2005). Approaches
that couple FPM and FDM can yield a detailed description of fluvial
processes and channel evolution. However, these are mostly lim-
ited to controlled laboratory settings. At the catchment scale, a
coupled FPM–FDM has been applied in two-dimensional planes
where the vertical velocity variation has been neglected
(Koltermann and Gorelick, 1992). Fully-coupled modelling of the
fluvial processes and fluid dynamics, however, is still a challenge,
because applying the FDM requires precise knowledge of the initial
and flow boundary conditions, which are generally not available
(e.g. Koltermann and Gorelick, 1992; Lesshafft et al., 2011;
Simpson and Castelltort, 2006).

Due to these difficulties, the determination of flow velocity is
often uncertain. Therefore, a trend in the past decades has been
to develop stochastic fluvial process models that account for the
stochasticity in the river discharge (e.g. Lague, 2014; Molnar
et al., 2006; Tucker and Bras, 2000), and the stochasticity of parti-
cle motion (e.g. Furbish et al., 2012; Roseberry et al., 2012).

In this paper, we pursue a similar stochastic approach by devel-
oping the convective FPM (Davy and Lague, 2009), to account for
the uncertainties in factors that can be represented by the statistics
of flow velocity. These factors include riverbed topography, river
discharge and river channel position in the fluvial trace. The veloc-
ity in the model is characterized by a stochastic description con-
sisting of an ensemble mean component and a perturbation
component. The model relates the statistics of the velocity with
the statistics of sediment load in the river and of sediment thick-
ness on the riverbed.

This study is organized as follows: Section 2 introduces the con-
vective FPM and the stochastic formulation employing the per-
turbation method. Section 3 derives the analytical solutions for
the sediment load and sediment thickness. The algorithmic imple-
mentation is summarized in Section 4 and Section 5 applies the
stochastic model to a synthetic case.

2. Governing equations

2.1. Mass balance equation

The mass balance describing fluvial processes is expressed as
two separate equations (Davy and Lague, 2009; Paola and Voller,
2005). The first one describes sediment transport in the river:

@gðx; tÞ
@t

þ @vðx; tÞgðx; tÞ
@x

� Eðx; tÞ þ Dðx; tÞ ¼ 0; ð1Þ

and the second one describes sediment accumulation on the
riverbed:

@zðx; tÞ
@t

¼ 1
1�u

½Dðx; tÞ � Eðx; tÞ�: ð2Þ

Expressions for E (erosion rate) and D (deposition rate) are
given in Appendix B. A list of notation is available at the end.

The flow velocity (v) is one of the key parameters in Eqs. (1) and
(2), which can be modelled by Navier–Stokes equation (Necker
et al., 2005) or simply described by the Manning formula (e.g.
Lague, 2010; Le Méhauté, 1976) (Appendix A). However, the appli-
cation of Eqs. (1) and (2) to reproduce a geological formation often
presents uncertainties, because the factors influencing v such as
paleotopography and paleohydrology are difficult to determine. It
is therefore necessary to develop Eqs. (1) and (2) as stochastic
equations that contains the information on the uncertainty of v.
Due to the complexity of the factors influencing alluvial sedimen-
tary processes, we deliberately chose to make the following sim-
plifying assumptions:

(1) Chemical precipitation and dissolution, and the abrasion of
the sediment particles are not considered.

(2) One-dimensional convective Exner model in Eqs. (1) and (2)
is flexible for the modelling river morphodynamics in an
inland sedimentary basin. The influences of sediment parti-
cle diffusion and the downstream boundary on sediment
transport and accumulation are neglected (Zolezzi and
Seminara, 2001). In the near-shore environment, where the
downstream boundary has significant influence on the sedi-
mentary processes, it would be worthwhile to use the diffu-
sive Exner equation, which is not discussed in this study.

(3) We focus on the uncertainty in sediment transport and accu-
mulation induced by the velocity fluctuation, but the uncer-
tainty relating to the sediment load fluctuation attributed,
for example, to the tributaries, is beyond the scope of this
study.

2.2. Mass balance equation revisited

Eqs. (1) and (2) are nonlinear partial differential equations,
which are solved numerically. River channels are discretised into
N segments with N + 1 nodes, and v is assumed to be constant
within each segment (Lanzoni and Seminara, 2002). Eqs. (1) and
(2) are then rewritten as:

@gðxk; tÞ
@t

þ vk
@gðxk; tÞ
@xk

� Ek þ Dk ¼ 0; ð3Þ

Nomenclature

Symbol Definition
b deposition coefficient, L/T
Cd dimensionless drag coefficient
D deposition rate of sediment, L/T
dZv(j) complex Fourier amplitude of flow velocity
Dt time step, T
Dx length of discretized segment, L
E erosion rate of sediment, L/T
c erosion efficiency coefficient, L2.5 T2/M1.5

H river depth, L
j magnitude of the wave number vector
k correlation scale of the flow velocity, L
p probability of the channel occurrence
/ transfer function between v and g

/⁄ conjunction of /
u porosity of deposited sediment
qs(t) sediment input from the river source, L
qf density of water, M/L3

svv(j) spectral density function of flow velocity
t time, T
v stream velocity, L/T
Wf width of fluvial trace, L
Wc width of river channel, L
x distance along the stream from its origin, L
g sediment load in the river, L3/L2

r2
M variance of the quantity M

z sediment thickness, L
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