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s u m m a r y

Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural
streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-
through curves accurately following accidental spills in urban streams. This study presents a novel gene
expression model for longitudinal dispersion developed using 150 published data sets of geometric and
hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The
training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and
33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop
empirical relations between the longitudinal dispersion coefficient and various control variables, includ-
ing the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material rough-
ness on the dispersion coefficient. Two GEP models have been developed, and the prediction
uncertainties of the developed GEP models are quantified and compared with those of existing models,
showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed
for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP
models compared to the existing regression models is that exponents of the key variables (aspect ratio
and bed material roughness) are not constants but a function of the Froude number. The proposed rela-
tions are both simple and accurate and can be effectively used to predict the longitudinal dispersion
coefficients in natural streams.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Accidental spills are major threats to urban streams. The Ontario
Ministry of the Environment’s Spill Action Centre (SAC) docu-
mented 1030 spills to water courses during the year 2008
(Ministry of Environment, 2008). Contaminant spills in streams
may occur for different reasons such as chemical transport acci-
dents which occur while moving chemicals too close to streams,
illegal dumping of contaminants, and sudden increases in untreated
wastewater discharges (bypass) into a stream (Chin, 2013).

To more accurately simulate the travel time and the break-
through curves of spilled contaminants, it is vital to predict longi-
tudinal dispersion coefficients for different reaches of the stream
during a range of flow conditions. The longitudinal dispersion
coefficient (E) is known to depend on the bed material roughness
(friction term), the aspect ratio (width-to-depth ratio), and the

Froude number, which reflects the effect of the longitudinal slope
(Disley et al., 2015).

Some theoretical and empirical models that have been widely
considered, include those by Elder (1959), Fisher (1968, 1975),
McQuivey and Keefer (1974), Liu (1977), Fisher et al. (1979),
Iwasa and Aya (1991), Seo and Cheong (1998), Kashefipour and
Falconer (2002) and Disley et al. (2015). Although these models
include the same key input variables, their predictions of longitu-
dinal dispersion vary significantly. Moreover, all of the models
have shortcomings with respect to the inadequate representation
of natural data and the presence of large prediction errors.
Compared with natural stream measurements, all of the models
yielded significant errors in prediction of the longitudinal disper-
sion coefficient. Therefore, a simpler and more reliable approach
is required to predict longitudinal dispersion coefficient in urban
streams (Disley et al., 2015).

1.1. Previous studies using GEP

Gene expression programming (GEP) has been recently
employed by a number of researchers for developing complex
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relations between experimental data as an efficient alternative to
traditional regression and machine learning methods. GEP involves
computer programs of different sizes and shapes encoded in linear
chromosomes of a fixed length. GEP chromosomes are composed of
multiple genes, with each gene encoding a smaller sub-program
(Ferreira, 2001). GEP has been recently used successfully to solve
hydraulic engineering problems, e.g., scour prediction downstream
of hydraulic structures (Guven and Gunal, 2008), dispersion coeffi-
cient in natural streams (Azamathulla and Wu, 2011), dispersion
coefficient in pipes (Sattar, 2014), prediction of dam breach
parameters (Sattar, in press), prediction of transverse mixing
(Azamathulla and Ahmad, 2012), and prediction of scour depth
downstream of sills (Azamathulla, 2012).

Therefore, the main objective of this study is to develop a more
accurate prediction model for the longitudinal dispersion coeffi-
cient using 150 published data sets of geometric and hydraulic
parameters in natural streams in the United States, Canada,
Europe, and New Zealand.

1.2. Available prediction models

Since the 1950s many researchers have developed empirical
equations for the longitudinal dispersion coefficient (E), including
Elder (1959), McQuivey and Keefer (1974), Fischer (1975), Liu
(1977), Iwasa and Aya (1991), Koussis and Rodríguez-Mirasol
(1998), Li et al. (1998), Seo and Cheong (1998), Deng et al.
(2001), Kashefipour and Falconer (2002) and Disley (2010). These
empirical models are presented in Table 1.

2. Materials and methods

2.1. Gene expression programming

Evolutionary algorithms (EAs) are a class of problem-solving
techniques based on the Darwinian theory of evolution by ‘‘natural
selection’’ and involve searching within a population of solutions
for the ‘‘fittest’’ solution. A possible and acceptable solution, i.e.,
a member of the population, is called an individual. Each iteration
of an EA includes a competitive selection that weeds out poor solu-
tions through the evaluation of a fitness value that indicates the
quality of the individual solution to the problem. Gene expression
programming (GEP) was invented by Ferreira in 1999, and is the
natural development of EAs.

The great insight of GEP was the invention of chromosomes
capable of representing any expression tree; GEP greatly surpasses
the genetic programming (GP) system (Ferreira, 2001). In GEP,
complex relations are encoded in simpler, linear structures of a
fixed length called chromosomes. The chromosomes consist of a
linear symbolic string of a fixed length composed of one or more

Nomenclature

a, b, c constants used in developed GEP models (�)
D index of agreement (�)
E longitudinal dispersion coefficient (m2/s)
EAs evolutionary algorithms
ET expression tree
Esn coefficient of efficiency (�)
E⁄ dimensionless dispersion coefficient (�)
eij Error in prediction (�)
�e Mean prediction error (�)
Fr Froude number (�)
fj GEP model fitness function (�)
GEP gene expression programming
GP genetic programming
g gravitational acceleration (m/s2)
H average depth of channel (m)
h head of gene (�)
i, j counter indices
K, K0 gradients of the regression line through the origin (�)
MAD mean absolute deviation (�)
MCS Monte Carlo simulation
m, n coefficient of determination of the regression line

through the origin
n number of cases
Oi observed values (�)
�O mean of observed values (�)

Pij value predicted by model (�)
�P mean value of model predictions (�)
RRSE relative squared error (�)
RMSE root mean square error (�)
Rm cross validation measures (�)
R2 coefficient of correlation (�)
R2

O squared correlation coefficient through the origin be-
tween predicted and observed values (�)

R02O squared correlation coefficient through the origin be-
tween observed and predicted values (�)

Sc marginal sensitivity coefficient (�)
Se standard deviation of the prediction errors (�)
Sn normalized sensitivity coefficient (�)
s longitudinal slope of the stream reach (m/m)
tg tail length of gene (�)
Tj value observed (�)
�T mean value of observed cases (�)
U average stream velocity (m/s)
U⁄ shear velocity (m/s)
W average width of channel (m)
q fluid density (kg/m3)
l dynamic viscosity (N m/s2)
r channel sinuosity (�)
; expected solution (�)

Table 1
Empirical models for longitudinal dispersion coefficient.

Researcher Empirical equation

Fischer (1975) E
U�H ¼ 0:011 W

H

� �2 U
U�
� �2

Liu (1977) E
U�H ¼ 0:18 W

H

� �2 U
U�
� �0:5

Koussis and Rodríguez-
Mirasol (1998)

E
U�H ¼ 0:6 W

H

� �2

Iwasa and Aya (1991) E
U�H ¼ 2 W

H

� �1:5

Seo and Cheong (1998) E
U�H ¼ 5:195 W

H

� �0:62 U
U�
� �1:428

Deng et al. (2001) E
U�H ¼ 0:15 1

8 0:145þ 1
3520ð Þ W

Hð Þ
1:38 U

U�ð Þ
� �

� �
W
H

� �1:667 U
U�
� �2

Kashefipour and Falconer
(2002)

E
U�H ¼ 10:612 U

U�
� �2

Rajeev and Dutta (2009) E
U�H ¼ 2 W

H

� �0:96 U
U�
� �1:25

Azamathulla and Wu (2011) E
U�H ¼ eecosðU=U� ÞþððU=U� Þ2=ððW=HÞþ3:956ÞÞ

þ sinððWH Þð
U

U�ÞÞð
W
H Þð

U
U� Þ

esinðW=HÞ þ ðU=U� Þ
1:037 �

10:76ðW=HÞ
U=U��11:38

Etemad-Shahidi and
Taghipour (2012)

E
U�H ¼ 15:49 W

H

� �0:78 U
U�
� �0:11

if W=H 6 30:6
E

U�H ¼ 14:12 W
H

� �0:61 U
U�
� �0:85

if W=H > 30:6
Sahay (2013) E

U�H ¼ 2 W
H

� �0:72 U
U�
� �1:37

S1:52
i

Disley et al. (2015) E
U�H ¼ 3:563F�0:4117

r
W
H

� �0:6776 U
U�
� �1:0132
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