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s u m m a r y

Soil water retention curves are an important parameter in soil hydrological modeling. These curves are
usually represented by the van Genuchten model. Two approaches have previously been taken to predict
curves across a field – interpolation of field measurements followed by estimation of the van Genuchten
model parameters, or estimation of the parameters according to field measurements followed by
interpolation of the estimated parameters. Neither approach is ideal as, due to their two-stage nature,
they fail to properly track uncertainty from one stage to the next. In this paper we address this shortcom-
ing through a spatial Bayesian hierarchical model that fits the van Genuchten model and predicts the
fields of hydraulic parameters of the van Genuchten model as well as fields of the corresponding soil
water retention curves. This approach expands the van Genuchten model to a hierarchical modeling
framework. In this framework, soil properties and physical or environmental factors can be treated as
covariates to add into the van Genuchten model hierarchically. Consequently, the effects of covariates
on the hydraulic parameters of the van Genuchten model can be identified. In addition, our approach
takes advantage of Bayesian analysis to account for uncertainty and overcome the shortcomings of other
existing methods. The code used to fit these models are available as an appendix to this paper. We apply
this approach to data surveyed from part of the alluvial plain of the river Rhône near Yenne in Savoie,
France. In this data analysis, we demonstrate how the inclusion of soil type or spatial effects can improve
the van Genuchten model’s predictions of soil water retention curves.
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1. Introduction

Soil water retention curves are one of the most important
parameters in soil hydrological modeling. These curves character-
ize water storage and pore distribution in soils and are an essential
input to drive models that simulate soil water balance for climate
and environmental monitoring as well as models of crop yield
management. These curves are usually represented by an equation
with several parameters that describe the relationship between
water content and potential or pressure head. This parametric
representation also allows the calculation of unsaturated hydraulic
conductivity based on the assumed pore-distribution models
(Mualem, 1976; Collis-George, 2014).

Various parametric equations have been proposed for modeling
water retention curves, including Brooks and Corey (1964), van
Genuchten (1980), and Kosugi (1996). Bimodal pore-distribution
models such as Durner (1994) also have been proposed. The

van Genuchten (VG) model is the most commonly used. Using
the notation similar to Voltz and Goulard (1994), the model is writ-
ten as

WðhÞ ¼ Ws �Wr

½1þ ðahÞn�m
þWr; Ws;Wr;a;m > 0; n > 1;

where WðhÞ represents the water content (in gg�1) at pressure head
h (in m), Ws is the saturated water content (in gg�1), Wr is the resid-
ual water content (in gg�1), and a (in m�1), n and m are shape
parameters. The parameters Ws and Wr indicate the water content
as h! 0 and h!1, respectively. The parameters a and n are
related with the inverse of air entry suction and the pore-size
distribution, respectively. Typically, since n is closely related to m,
van Genuchten (1980) proposed replacing m with 1� 1=n. This
special case of the VG model can thus be written as

WðhÞ ¼ Ws �Wr

½1þ ðahÞn�1�
1
n
þWr ; Ws;Wr ;a > 0; n > 1: ð1Þ

In this setting, the number of parameters reduces to four. This form
of the VG model has been widely used in addressing characteristic
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properties of soil water content. Our study also considers this form
of the VG model.

Many methods have been proposed to estimate the hydraulic
parameters of the VG model via measured water retention data.
In general, they can be divided into two categories:

1. Use optimization techniques to minimize the sum of squared
errors between the observed and modeled water retention. In
this case, the Levenberg–Marquardt algorithm of nonlinear
least-squares methods is used in the RETC program (van
Genuchten et al., 1991) and the SWRC Fit (Seki, 2007). Other
global optimization techniques have also been proposed such
as a genetic algorithm (Vrugt et al., 2001) or simulated annealing
(Younes et al., 2013).

2. Use Bayesian approaches in combination with Markov chain
Monte Carlo (MCMC) (Abbaspour et al., 1997; Vrugt et al.,
2003). The advantage of this approach is to provide the poster-
ior distribution of parameters rather than a set of single values
(i.e., point estimators).

Alternatively, pedotransfer functions (PTFs) (see Vila et al.,
1999; Vereecken et al., 2010, and the references therein) have also
been used to estimate the hydraulic parameters, but this is an indi-
rect method for predicting parameters from other more easily
measured soil properties.

Most research on the estimation of hydraulic parameters focuses
on finding the best parametric model that can characterize soil
hydraulic properties corresponding to water retention curves
(Vrugt et al., 2003). Such research typically does not consider spa-
tial variability of soil hydraulic properties, which can cause high
variations in water transport processes. In addition, water retention
curves are usually expensive to measure. Thus, spatial prediction of
these properties is an important topic. Although researchers have
been looking into efficient ways to predict water retention parame-
ters across a field or landscape, determining and describing the spa-
tial pattern of soil physical properties remains a difficult task for
modeling landscape-scale soil–water processes (Wendroth et al.,
2006). Voltz and Goulard (1994) proposed a two-stage approach
to address this task. They first interpolated water content at differ-
ent measured pressure heads and then used a least squares tech-
nique based on Marquardt’s maximum neighborhood method to
estimate VG parameters at each location of interest. Similarly,
Saito et al. (2009) used SWRC Fit to estimate VG parameters at each
location where data were measured, and conducted ordinary krig-
ing for interpolation at locations in between. Furthermore, they
evaluated two procedures: (1) fitting the VG model to the data
and then interpolating the parameters, and (2) interpolating
individual water retention measurements and then fitting the VG
model at each interpolated location. Their results showed that the
later procedure performed better when the mean absolute error
of water content was used as the evaluation criteria. However,
the approach of Voltz and Goulard (1994) and the latter one of
Saito et al. (2009) took no advantage of the spatial variability of
the VG model parameters to map water retention content curves.
On the other hand, since these two approaches fit local VG models
using a small sample size of measured water retention data, the
estimated hydraulic parameters may be imprecise which can affect
the precision of water retention curves. For example, the sample
size of measured water retention at each location was eleven in
the study of Saito et al. (2009). Consequently, abnormal observa-
tions would reduce the precision of the first procedure of Saito
et al. (2009). Importantly, these approaches use least-squares based
techniques to fit the VG model. As such, they lack the ability
to account for uncertainty of the hydraulic parameters and
could underestimate the uncertainty of predicted water retention
curves.

In this paper, we propose a spatial Bayesian hierarchical
approach to estimate and predict the VG model parameters and fur-
ther, to predict their corresponding water retention curves. This
approach allows soil properties and other physical or environmen-
tal factors to be incorporated into the VG model hierarchically to
interpret and predict the variation of soil water retention curves.
If a priori knowledge is known, PTFs can be included in this model
as well. In some sense, this approach can be thought as a hierarchi-
cal VG model. It is important to note that although Abbaspour et al.
(1997) and Vrugt et al. (2003) used Bayesian approaches to esti-
mate the VG model parameters, their approaches did not consider
spatial effects and cannot incorporate useful extraneous variables
to improve the performance of the VG model. With our approach
it is feasible to infer effects of covariates on hydraulic parameters
corresponding to soil water retention curves. In addition, different
from the two-stage approaches of Voltz and Goulard (1994) and
Saito et al. (2009), our approach can estimate and predict the
hydraulic parameters and water retention curves simultaneously
using all data from the study area. Importantly, since our approach
is in the Bayesian paradigm, the uncertainty of the hydraulic
parameters and water retention curves can be quantified. A
comprehensive introduction to the Bayesian paradigm, and the
computational techniques within this paradigm, are beyond the scope
of this paper. We cite related papers both from application journals
and where necessary, from statistical ones. A good resource for
interested readers is Carlin and Louis (2001) or Gelman et al. (2003).

We applied this approach to data that were previously surveyed
from part of the alluvial plain of the river Rhône near Yenne in
Savoie, France. Our example demonstrates how the inclusion of
covariate information such as soil type or the inclusion of spatial
effects in the model can lead to improvements in the performance
of the VG model in predicting water retention curves. The fact that
this is achieved while simultaneously accounting for uncertainty
both in the VG model and in the spatial interpolation, marks an
important contribution to this field of research.

2. Data and method

2.1. Data description

Voltz and Goulard (1994) surveyed water retention from part of
the alluvial plain of the river Rhône near Yenne in Savoie, France.
Fig. 1 illustrates the spatial distribution of 75 sites in the study area
from two sampling schemes: 54 are from a rectangular grid with
points equally spaced at 100 and 200 m intervals in the x and y
direction, respectively, and 21 are from a square grid with points
equally spaced at 141 m intervals. Because of gravel content,
Fig. 1 illustrates that the two sampling scheme were not sampled
completely. At each location, undisturbed topsoil aggregates were
collected at a depth of 40 cm. Their gravimetric water contents
were measured at eight levels of pressure head: �0.1, �0.5, �1,
�2, �4, �9, �30, and �150 m in a pressure plate extractor.

The study area contained six soil types which differ in terms of
their soil texture and drainage characteristics. Voltz and Goulard
(1994) described these six classes as follows: silt loam over loam
(type 1), homogeneous silt loam (type 2), silty clay loam over poorly
drained silty clay with marked gleyic features in depth (type 3),
homogeneous silt loam with shallow phreatic water (type 4), loam
over gravelly sand (type 5), and loam with angular gravel and pres-
ence of shallow phreatic water (type 6). However, the 75 sampled
locations only covered five of these soil types since sites of type 6
could not be sampled. Fig. 1 illustrates the spatial distribution of
five soil classes across the 75 sampled locations. Fig. 2(a) demon-
strates the observed water retention curves and associated mean
curve as a function of pressure head. The red curve highlighted in
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