
A multivariate approach for persistence-based drought prediction:
Application to the 2010–2011 East Africa drought

Amir AghaKouchak
Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, E4130 Engineering Gateway, Irvine, CA
92697-2175, USA

a r t i c l e i n f o

Article history:
Available online 2 October 2014

Keywords:
Drought prediction
East Africa
Multivariate Standardized Drought Index,
MSDI
Horn of Africa

s u m m a r y

The 2011 East Africa drought caused dire situations across several countries and led to a widespread and
costly famine in the region. Numerous dynamic and statistical drought prediction models have been used
for providing drought information and/or early warning. The concept of Ensemble Streamflow Prediction
(ESP) has been successfully applied to univariate drought indicators (e.g., the Standardized Precipitation
Index) for seasonal drought prediction. In this study, we outline a framework for using the ESP concept
for multivariate, multi-index drought prediction. We employ the recently developed Multivariate Stan-
dardized Drought Index (MSDI), which integrates precipitation and soil moisture for describing drought.
In this approach, the ESP concept is first used to predict the seasonal changes to precipitation and soil
moisture. Then, the MSDI is estimated based on the joint probability of the predicted accumulated
precipitation and soil moisture as composite (multi-index) drought information. Given its probabilistic
nature, the presented model offers both a measure of drought severity and probability of drought occur-
rence. The suggested model is tested for part of the 2011 East Africa drought using monthly precipitation
and soil moisture data obtained from the NASA Modern-Era Retrospective Analysis for Research and
Applications (MERRA-Land). The results indicate that the suggested multi-index predictions are consis-
tent with the observation. Furthermore, the results emphasize the potential application of the model
for probabilistic drought early warning in East Africa.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Drought is among the most costly natural hazards, and reliable
drought prediction would provide invaluable information for pre-
paredness and mitigation. The 2011 East Africa drought was one
of the most recent extreme events that led to famine and severe
food crises in several countries, affecting over 9 million people
(Funk, 2011; OCHA, 2011; USAID/FEWSN, 2011; ACTED, 2011).
There is a consensus that a proactive plan through drought mitiga-
tion and vulnerability reduction is more efficient than a plan for
crisis management (reactive approach), especially if drought
involves food crises (WMO-GWP, 2011). Early warning systems
and probabilistic drought forecasts are fundamental for developing
and implementing a proactive drought mitigation plan (WMO,
2006). Furthermore, probabilistic and risk-based drought monitor-
ing and prediction information is not only useful for early warning
systems, but is also vital for successful drought relief management
throughout an extreme event.

There are several research and operational models that provide
drought monitoring and/or prediction information over East Africa

(Heim, Jr. and Brewer, 2012; Hao et al., 2014). The U.S. Agency for
International Development (USAID) Famine Early Warning System
Network uses satellite data and rainfall forecasts for drought early
warning (Funk, 2009). Operated by the Land Surface Hydrology
Group at Princeton University, the experimental African Flood
and Drought Monitor (Sheffield et al., 2014) offers near real-time
monitoring of land surface hydrological conditions using the Vari-
able Infiltration Capacity (VIC) (Sheffield et al., 2008; Yuan et al.,
2013). Also, the Global Integrated Drought Monitoring and Predic-
tion System (GIDMaPS; Hao et al., 2014; Momtaz et al., 2014) pro-
vides drought information based on multiple drought indicators
and input data sets.

Anderson et al. (2012) developed a drought monitoring product
based on merged soil moisture estimates from three remote
monitoring techniques and examined the temporal and spatial
evolution of the Horn of Africa drought. AghaKouchak and
Nakhjiri (2012) developed a near real-time Bayesian-based
drought monitoring algorithm using long-term Global Precipita-
tion Climatology Project (Adler et al., 2003) and high resolution
near real-time satellite observations. This data set shows a statisti-
cally significant drying trend in East Africa over the past three dec-
ades (Damberg and AghaKouchak, 2014).
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Different indicators have been proposed to characterize drought
(Heim, 2002; Mishra and Singh, 2010), such as the Standardized
Precipitation Index (SPI) (McKee et al., 1993) and the Palmer
Drought Severity Index (PDSI) (Palmer, 1965). The SPI has been
widely used for drought monitoring and is recommended by the
World Meteorological Organization (WMO) for monitoring meteo-
rological drought (Hayes et al., 2011). The concept of the SPI can be
applied to other variables such as soil moisture (SSI: Hao and
AghaKouchak, 2013) and runoff (SRI: Shukla and Wood, 2008) for
agricultural and hydrological drought monitoring, respectively.
Drought is a complex phenomenon, and one single indicator (e.g.,
precipitation) may be insufficient for describing all drought fea-
tures, although droughts primarily originate from sustained pre-
cipitation deficits. It is argued that the integration of
precipitation with other drought-related variables, such as soil
moisture and streamflow, is essential for efficient drought moni-
toring and early warning systems (Wilhite, 2005). For this reason,
and in recent years, a variety of integrated drought indicators that
combine different variables have been proposed, such as the
Aggregate Drought Index (ADI) (Keyantash and Dracup, 2004),
the Standardized Precipitation Evapotranspiration Index (SPEI)
(Vicente-Serrano et al., 2010), the Joint Deficit Index (JDI) (Kao
and Govindaraju, 2010), the Combined Drought Indicator (CDI)
(Sepulcre-Canto et al., 2012), and the Multivariate Standardized
Drought Index (MSDI) (Hao and AghaKouchak, 2014).

Drought is typically predicted by using monthly to seasonal
forecasts of climatic variables as inputs to drought indicators.
There are generally two types of methods for drought prediction:
(a) dynamic methods based on weather/climate model simula-
tions, and (b) stochastic methods. The dynamic method for drought
prediction relies on the prediction of relevant climate variables
(e.g., precipitation) and then computing the corresponding drought
indicator (e.g., SPI) (Yoon et al., 2012). Furthermore, dynamically
predicted precipitation (and temperature) can be used as forcing
to drive land surface models for predicting soil moisture and runoff
for agricultural and hydrological drought monitoring (Luo and
Wood, 2007; Mo et al., 2012). Dynamic models offer valuable infor-
mation, especially for short-term forecasting (Yoon et al., 2012).
However, their seasonal forecasts (especially, precipitation) exhibit
high uncertainty and low seasonal prediction skill (National
Research Council, 2006; Livezey and Timofeyeva, 2008; Lavers
et al., 2009; Yoon et al., 2012).

Several stochastic models have been developed/used for predic-
tion of hydrometeorological variables based on the autoregressive
moving-average (ARMA) approach (Kendall and Dracup, 1992;
Mishra and Singh, 2011), independent component analysis (ICA)
method (Westra et al., 2007, 2008), Canonical Correlation Analysis
(Barnston, 1994; Ntale et al., 2003; Shabbar and Barnston, 1996),
resampling techniques (Rajagopalan et al., 1997), partial mutual
information (PMI) criterion (Sharma, 2000; Sharma et al., 2000),
and the Ensemble Streamflow Prediction (ESP) method (Twedt
et al., 1977; Day, 1985; Wood and Lettenmaier, 2006; Wood,
2008; Lyon et al., 2012; AghaKouchak, 2014; Souza Filho and Lall,
2003; Shukla and Lettenmaier, 2011; Mo et al., 2012). The latter is
based on the concept of persistence (or autocorrelation) of the SPI
resulting from the accumulation of precipitation over time (e.g., 3-,
6-month). In a recent study, Yuan and Wood (2013) compared
the ESP forecasts with those from multiple climate forecast models
for meteorological drought onset prediction, and showed that
dynamical models have higher deterministic forecast skill than
ESP, although the probabilistic forecast skill is not necessarily better
than ESP without additional statistical analysis (e.g., Bayesian con-
ditional ensemble calibration). This highlights that importance of
improving the current statistical drought prediction techniques.

In previous studies, the ESP approach has been applied to uni-
variate drought indicators for seasonal drought prediction (e.g.,

Lyon et al., 2012). Limitations of univariate drought assessment
have been discussed in numerous publications (Hao and
AghaKouchak, 2013). In this study, we outline a framework for
applying the ESP concept for multivariate, multi-index drought
prediction. In this approach, the ESP concept is first used to predict
the seasonal changes to precipitation and soil moisture. Then, the
recently developed Multivariate Standardized Drought Index
(MSDI) is used to derive composite multi-index drought informa-
tion based on precipitation and soil moisture. The modeling frame-
work is probabilistic and provides not only a measure of drought
severity, but also probability of drought occurrence. This frame-
work is used for prediction of the 2011 East Africa drought using
monthly precipitation and soil moisture data.

The paper is organized as follows. Following this introduction,
the methodology and modeling framework is introduced in detail
in Section 2. Section 3 discusses the data and study area. The
results are provided in Section 4, followed by the summary of
the findings and remarks in Section 5.

2. Method

The Multivariate Standardized Drought Index (MSDI) integrates
drought information from precipitation and soil moisture and pro-
vides a composite of meteorological and agricultural drought con-
ditions (Hao and AghaKouchak, 2013). In essence, the MSDI is the
multivariate version of the commonly used SPI (McKee et al.,
1993). Denoting the accumulated precipitation and soil moisture
for a certain time scale (e.g., 1-, 3-, 6-month) as random variables
X and Y, their joint probability distribution (p) can be expressed as:

PrðX 6 x;Y 6 yÞ ¼ p ð1Þ

The MSDI can then be computed as: MSDI = u�1(p), where u is
the standard normal distribution function. The joint probability of
precipitation and soil moisture in Eq. (1) can be estimated with
either a parametric or an empirical method (Hao and
AghaKouchak, 2013, 2014). Similar to the SPI, the MSDI can be esti-
mated at different time scales (e.g., 1-, 3-, 6-month) to characterize
drought.

In the ESP method, the historical observations are assumed to
be equally likely scenarios of the future. In previous studies, uni-
variate indices such as precipitation (Lyon et al., 2012) and soil
moisture (AghaKouchak, 2014) percentile are used with the ESP
concept for drought prediction. In this study, a multivariate frame-
work is proposed for applying the ESP to multiple variables (here,
precipitation and soil moisture). The MSDI is then used for multi-
index characterization of drought based on ESP-based predictions
of precipitation and soil moisture.

Assume that monthly precipitation and soil moisture data are
available up to year n + 1 (an n-year climatology is available for
the study area). We define the target month m as the month for
which drought conditions are to be predicted. In the following,
the step-by-step process to derive 1-month lead drought predic-
tion for the month m of year n + 1 using the ESP and the 6-month
MSDI is discussed. Denote the 6-month accumulated precipitation
(AP) and soil moisture (AS) for target month m of year n + 1 as
APn+1,m and ASn+1,m, which can be expressed as (Hao et al., 2014):

APnþ1;m¼ Pnþ1;m�5þPnþ1;m�4þPnþ1;m�3þPnþ1;m�2þPnþ1;m�1þPnþ1;m

ð2Þ

ASnþ1;m¼ Snþ1;m�5þSnþ1;m�4þSnþ1;m�3þSnþ1;m�2þSnþ1;m�1þSnþ1;m

where Pn+1,m and Sn+1,m are precipitation and soil moisture to be
predicted for the target month m, respectively. In the above
equation, the accumulations (Pn+1,m�1, Pn+1,m�2, Pn+1,m�3, Pn+1,m�4,
Pn+1,m�5) and (Sn+1,m�1, Sn+1,m�2, Sn+1,m�3, Sn+1,m�4, Sn+1,m�5) are
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