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s u m m a r y

The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for
the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary
stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built
of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated
with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical
processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydro-
logic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an
ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deter-
ministically through a hydrologic model into an ensemble of time series of outputs, which is next trans-
formed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages).
Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must
be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or
even thousands (for probabilistic stage transition forecasts). The computing time needed to run the
hydrologic model this many times renders the straightforward simulations operationally infeasible. This
motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR),
which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble
members after each run of the hydrologic model; this auxiliary randomization reduces the required size
of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian
ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against
the prior (climatic) distribution of predictand, possesses a Bayesian coherence property, constitutes a
random sample of the predictand, and has an acceptable sampling error—which makes it suitable for
rational decision making under uncertainty.

Published by Elsevier B.V.

1. Introduction

1.1. Background

The need for probabilistic forecasting in hydrology has been
recognized (Krzysztofowicz, 2001a), and steps toward routine pro-
duction of probabilistic forecasts are being taken (Schaake et al.,
2007; Demargne et al., 2014). Because modeling hydrologic pro-
cesses in large basins, wherein dependencies between a basin
and neighboring or upstream basins must be accounted for, is very
complex, specialized techniques for producing probabilistic fore-
casts through a deterministic hydrologic model must be developed.
However, no existing techniques are wholly adequate: either they

fail to satisfy important theoretic properties or they do not meet
the needs of all users in all basins.

Probabilistic forecast of a stochastic process {H1, . . ., HN} may
take one of two forms: analytical or ensemble. An analytical fore-
cast provides a predictive joint distribution function of the process
{H1, . . ., HN}, which directly quantifies uncertainty about all pre-
dictands. Such a forecast is most appropriate for users employing
analytical decision systems which require distribution functions
(e.g., warning-response models and stochastic control models).
However, for users employing simulation-based decision systems,
the required format of the forecast is an ensemble of possible
realizations of the process {H1, . . ., HN}. This ensemble may be used
as input to a decision system and as a sample for estimating
empirical distribution functions of desired predictands.

Starting from normative requirements of rational deciders,
Krzysztofowicz (1999) formulated a Bayesian theory of probabilistic
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forecasting via deterministic hydrologic model. From that theory,
three analytic-numerical Bayesian forecasting systems (BFS) were
developed. The most complex one, the analytic-numerical BFS for
probabilistic stage transition forecasting (Krzysztofowicz and
Maranzano, 2004b), was recently deployed as a Monte-Carlo
generator of the Bayesian ensemble forecast of the river stage time
series (Herr and Krzysztofowicz, 2010): the ensemble is generated
by recursively sampling from the family of analytical one-step
transition distributions output by the BFS. This ensemble generator
satisfies important theoretic properties, is very efficient
computationally, and meets the needs of users who require an
ensemble forecast. However, it inherits the limitation of the ana-
lytic-numerical BFS: it is suitable for small-to-medium headwater
basins only because the uncertainty in the spatio-temporal
disaggregation of the total precipitation amount can be modeled
analytically only in an approximate fashion.

1.2. Objective

The research reported herein works toward a general Bayesian
technique for ensemble forecasting, which satisfies the key theo-
retic properties and can be easily scaled up to large basins, so long
as an appropriate source of an ensemble of future inputs to a
hydrologic model is available. The basic technique, the ensemble
Bayesian forecasting system (EBFS), employs a Monte Carlo genera-
tor which outputs a random sample of the future hydrologic time
series. However, as will be shown experimentally, this technique
may be operationally infeasible due to computing time needed to

meet the ensemble size requirements established by Herr and
Krzysztofowicz (2010). This finding motivates the development
of a refined technique, the ensemble Bayesian forecasting system
with randomization (EBFSR), which can increase a given ensemble
size without additional runs of the hydrologic model; this tech-
nique makes generation of large ensembles operationally feasible.

The research is reported in two parts. Part I presents the theory,
the models, and the forecasting algorithms. Part II (Herr and
Krzysztofowicz, 2015) reports numerical experiments whose pur-
pose is to validate the EBFS and EBFSR, to illustrate their properties,
and to establish guidelines for choosing the randomization factor
in the EBFSR.

1.3. Required system properties

From the viewpoint of Bayesian forecast-decision theory
(Krzysztofowicz, 1983, 1999), there are three properties required
of any probabilistic forecasting system intended to provide
information for rational decision making under uncertainty:

1. it must quantify all sources of uncertainty pertaining to the
predictand;

2. it must possess a self-calibration property, wherein, in the
long run, the probabilistic forecasts preserve the prior (cli-
matic) distribution of the predictand; and

3. it must possess a coherence property, wherein the eco-
nomic value of the forecast is never negative, relative to
the value of the prior distribution of the predictand.

Nomenclature

General
HUP hydrologic uncertainty processor
IEF input ensemble forecaster
INT integrator
IUP input uncertainty processor
MCG Monte-Carlo generator
NQT normal quantile transform
Cor Pearson’s product-moment correlation function
r response function representing deterministic hydro-

logic model

Variables and parameters
anv, bnv, dnv, env (HUP) likelihood conditional regression coeffi-

cients
Anv, Bnv, Dnv, Env, Tnv (HUP) posterior parameters
cnv (HUP) prior conditional correlation coefficient
h0 observations of H up to forecast time
k index of realizations in a sample
K likelihood sample size
K0 prior sample size
M ensemble size, number of ensemble members (real-

izations)
MP number of runs of the hydrologic model with x > 0
Mv number of ensemble members, conditional on V = v
n index of time steps, index of lead times
N last time step, last lead time
pn probability number
R randomization factor
t0 forecast time
tn time instance
T lead time of the forecast of X

u deterministic inputs to the hydrologic model
v information predicting X

m probability of precipitation occurrence
y states that partially explain hydrologic uncertainty
Hnv (HUP) residual variate from likelihood conditional

regression
Nnv (HUP) residual variate from prior conditional regres-

sion
r2

nv (HUP) variance of Hnv

s2
nv (HUP) variance of Nnv

Variates and realizations
H, h predictands (variates being forecasted)
Hn, hn actual river stage at time tn

S, s outputs from the hydrologic model
Sn, sn model river stage at time tn

V, v indicator of precipitation occurrence
Wn, wn NQT of Hn, hn

Xn, xn NQT of Sn, sn

X, x inputs to the hydrologic model forecasted probabilis-
tically

Distribution and density functions
DF, df distribution function, density function
f conditional df of S, likelihood function of H
g prior conditional df of H
P generic probability function
Q, Q-1 standard normal DF, inverse of DF
Cnv (HUP) marginal DF of Hn within HUP
g generalized df of X
�Knv (HUP) marginal DF of Sn within HUP
n generalized predictive df of H
p generalized df of S
/ generalized posterior df of H
Unv (HUP) conditional posterior one-step transition DF
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