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s u m m a r y

Agricultural droughts are often characterized by soil moisture in the root zone of the soil, but crop needs
are rarely factored into the analysis. Since water needs vary with crops, agricultural drought incidences in
a region can be characterized better if crop responses to soil water deficits are also accounted for in the
drought index. This study investigates agricultural droughts driven by plant stress due to soil moisture
deficits using crop stress functions available in the literature. Crop water stress is assumed to begin at
the soil moisture level corresponding to incipient stomatal closure, and reaches its maximum at the
crop’s wilting point. Using available location-specific crop acreage data, a weighted crop water stress
function is computed. A new probabilistic agricultural drought index is then developed within a hidden
Markov model (HMM) framework that provides model uncertainty in drought classification and accounts
for time dependence between drought states. The proposed index allows probabilistic classification of the
drought states and takes due cognizance of the stress experienced by the crop due to soil moisture deficit.
The capabilities of HMM model formulations for assessing agricultural droughts are compared to those of
current drought indices such as standardized precipitation evapotranspiration index (SPEI) and self-cal-
ibrating Palmer drought severity index (SC-PDSI). The HMM model identified critical drought events and
several drought occurrences that are not detected by either SPEI or SC-PDSI, and shows promise as a tool
for agricultural drought studies.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The onset of an agricultural drought event is typically marked
by a decline in the soil moisture level below a threshold value that
affects crops. Precipitation, soil moisture, and temperature are the
common variables adopted for agricultural drought studies
(Mishra and Singh, 2010). Various indices for characterizing agri-
cultural droughts are listed in Maity et al. (2013). Among these,
Palmer Drought Severity Index (PDSI) (Palmer, 1965), Crop Mois-
ture Index (CMI) (Palmer, 1968), Soil Moisture Anomaly Index
(Bergman et al., 1988), and Vegetation Condition Index (VCI) (Liu
and Kogan, 1996) are popular.

Meteorologic and hydrologic drought indices (e.g., Standardized
Precipitation Index SPI, and PDSI) have been often used in agricul-
tural drought studies (Narasimhan and Srinivasan, 2005). The PDSI
uses both precipitation and surface air temperature as inputs, in
contrast to SPI that uses precipitation alone. However, PDSI is lim-
ited as an indicator of soil moisture status or as being capable of
identifying agricultural droughts; it demonstrates good correlation
with soil moisture content during warm seasons but weak

correlation in spring as the underlying model does not account
for the effect of snowmelt (Dai et al., 2004). Palmer (1968) devel-
oped the Crop Moisture Index (CMI) as an index for short-term
agricultural droughts from procedures similar to the PDSI. The
CMI is computed from evapotranspiration deficits for monitoring
short-term agricultural drought conditions that modulate crop
growth. Meyer et al. (1993) developed a Crop Specific Drought
Index (CSDI) for corn using evapotranspiration estimates. An alter-
native drought index—Standardized Precipitation Evapotranspira-
tion Index (SPEI) that possesses the merits of PDSI and SPI in
terms of sensitivity to temperature-driven evaporation that is
important in crop growth and multi-scalar properties, respectively,
was proposed by Vicente-Serrano et al. (2010). The performance of
SPEI in drought impact analyses and climate change studies is well
documented (Yu et al., 2013; Potop et al., 2012; Vicente-Serrano
et al., 2010).

Researchers typically regard soil moisture as the most appropri-
ate indicator of agricultural droughts (Keyantash and Dracup,
2002; Karamouz et al., 2004; Sheffield and Wood, 2008). Estima-
tion of soil moisture from ground measurements is difficult due
to heterogeneity caused by the spatially varying precipitation, land
cover, soil and topography (Margulis et al., 2002; Vereecken et al.,
2008). Temporal and spatial resolution of soil moisture is also
crucial for predicting adequate soil profile wetting and drying
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between precipitation events. The role of soil moisture in recurring
droughts in North America was studied by Oglesby and Erickson
(1989). Sheffield et al. (2004) used soil moisture estimates from
the Variable Infiltration Capacity (VIC) model to develop a drought
index that identified major drought events of the past and had
good correlations with PDSI. Lakshmi et al. (2004) found that the
deep layer soil moisture was capable of characterizing droughts
in the Mississippi River Basin. The Soil Moisture Deficit Index
(SMDI) developed by Narasimhan and Srinivasan (2005), based
on weekly soil moisture deficits, had good correlation with indices
such as SPI and PDSI, and offered better performance because of its
fine spatial and temporal resolution. The authors used SWAT
model to simulate daily soil moisture values at 4 km � 4 km spatial
resolution that were then aggregated to a weekly time scale. Tang
and Piechota (2009) explored the possibility of deep layer soil
moisture as an indicator of climate extremes, and linked it to PDSI,
precipitation, and streamflows. Their study utilized soil moisture
as a drought indicator for characterizing the hydrologic status for
the Colorado River Basin, and further identified the spatial and
temporal variability of soil moisture in response to drought events
in the region.

Root-zone soil moisture availability is used by agencies such as
the United States Department of Agriculture (USDA)-International
Production Assessment Division (IPAD)—as a major factor influenc-
ing crop yield forecasts (Bolten et al., 2010). When Wu et al. (2011)
performed drought vulnerability assessment for China, seasonal
crop water deficiency, available soil water-holding capacity and
irrigation were adopted as the important drought indicators. The
soil water holding capacity is a function of soil type, and varies spa-
tially across a region creating patterns of crop water stress and
water resource availability. Maity et al. (2013) characterized
drought proneness of Malaprabha Basin, India, via a copula model
for resilience and vulnerability values calculated from modeled soil
moisture data for the region.

Since water needs vary with crops, agricultural drought inci-
dences in a region can be assessed better if crop responses to soil
water deficits are also accounted for in the index. Water stress
influences rate of photosynthesis and stomatal closure, and affects
crop production (Scholes and Walker, 1993). Denmead and Shaw
(1960) studied the effect of soil moisture deficit on the develop-
ment and yield of corn, by imposing soil moisture deficit at differ-
ent growth stages. The changes in plant characteristics such as
stalk height, cob length, area of the ear leaf, total production of sto-
ver and grain, and yield of grain under moisture stress were
explored. Holt et al. (1964) investigated the effect of stored soil
moisture at planting on corn yields, and developed regression
equations for relating soil moisture to corn yield. A quantitative
understanding of the plant response to water stress requires
detailed study of soil moisture dynamics that include soil–water–
air interaction, nutrient uptake by plants, and transpiration. Soil
moisture deficits directly control the plant water potential that
determines transpiration losses and the turgor pressure in plant
cells (Porporato et al., 2001). The role of water stress in the struc-
ture and functioning of vegetation in African savannas (grassland
ecosystems) was studied by Rodriguez-Iturbe et al. (1999a,b).
The authors proposed a measure of ‘‘static’’ vegetation stress that
can be calculated from soil moisture levels corresponding to plant
wilting and full turgor. The ‘‘static’’ stress is zero when soil mois-
ture is above the level of incipient stomatal closure (full turgor)
and reaches a maximum value of one when soil moisture is at
the wilting point of a plant. These two stages are based on the
effects of water stress on plant physiology (Hsiao, 1973).
Porporato et al. (2001) later introduced ‘‘dynamic’’ water stress
to address the mean intensity, duration and frequency of soil mois-
ture deficits. Laio et al. (2001) developed a stochastic model for soil
moisture and water balance studies.

Drought conditions for crops in the Midwest are, by and large,
determined by the soil water availability rather than by precipita-
tion or evaporation. The plant response to water stress in the root
zone of a soil could be used to develop a new agricultural drought
index. Such an index would take due cognizance of crop needs.
However, the changing soil moisture status and different crop rota-
tion patterns followed in agricultural fields require that the
drought analysis be performed in a statistical sense. A probabilistic
assessment would convey the uncertainty in agricultural drought
classification that popular indices (SPEI, PDSI, SPI) do not provide.
Madadgar and Moradkhani (2013, 2014) developed a probabilistic
forecast model for future hydrologic droughts in a Bayesian frame-
work that allows probabilistic predictions and accounts for uncer-
tainty in drought characterization. In this study, agricultural
drought events in the state of Indiana are investigated in a proba-
bilistic framework using graphical models—specifically hidden
Markov models (HMMs)—given the temporal dependence that
exists between drought states. The crop stress function values
derived from soil moisture data are used to define agricultural
drought states (1-near normal, 2-moderate drought, 3-severe
drought, and 4-extreme drought).

Hidden Markov models have been used for solving numerous
practical problems in speech processing (Leggetter and
Woodland, 1995), signal processing (Crouse et al., 1998), genomics
(Yau et al., 2011), tunneling design (Leu and Adi, 2011), meteoro-
logical studies (Hocaoğlu et al., 2010) and air quality modeling
(Zhang et al., 2012). Mallya et al. (2013a) utilized HMMs to model
meteorologic and hydrologic droughts. Many of these applications
used Gaussian emission distributions (Leggetter and Woodland,
1995; Burget et al., 2010; Mallya et al., 2013a). Alternatively, atmo-
spheric ozone levels were modeled using Gamma hidden Markov
models by Zhang et al. (2012), and Sun et al. (2013) used HMMs
with log-normal, Gamma and generalized extreme value (GEV) dis-
tributions to predict particulate matter concentrations.

Unlike previous studies (Mallya et al., 2013a; Zhang et al.,
2012), the crop water stress function used in this study is bounded
between [0,1], and as a result, previously utilized emission distri-
butions are not suitable. This paper describes a new class of HMMs
with beta emission probability distributions. These new models
were used for developing probabilistic classification models for
agricultural droughts in Indiana. The merits of HMM-based proba-
bilistic agricultural drought index over SPI, self-calibrating PDSI
and SPEI were investigated. The organization of rest of the paper
is as follows: Section 2 describes the study area and data used,
Section 3 explains the methodology adopted in the development
of the probabilistic index, followed by results and discussion in
Section 4, and finally the conclusions derived from the study are
presented in Section 5. In addition, Appendix A provides deriva-
tions of equations used in the methodology.

2. Study area and data used

To examine the applicability of the graphical model, the state of
Indiana, USA is chosen as the study area. Indiana is nationally
ranked for agricultural production, major cultivated crops being
corn and soybean. For instance, Fig. 1 illustrates the cultivation
pattern followed in a small patch of land in Lake County in north-
ern Indiana during the period 2000–2012, where corn and soybean
are predominant. Crop rotation, fallow land, and double cropping
practices have been adopted in this area. Winter wheat, alfalfa
and pasture grass were grown as minor crops in alternate years.
Livestock and dairy farming thrive on agriculture over such farm-
lands in Indiana and other Midwest states.

Unfortunately, droughts are common in the Midwest, and ham-
per the prospects of large yields from these farms. Consequences of
the recent 2012 drought in US can be found in Mallya et al. (2013b)
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