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s u m m a r y

Most of the existing drought indices are based on a single variable (e.g. precipitation) or a combination of
two variables (e.g., precipitation and streamflow). This may not be sufficient for reliable quantification
of the existing drought condition. It is possible that a region might be experiencing only a single type
of drought at times, but multiple drought types affecting a region is quite common too. To have a
comprehensive representation, it is better to consider all the variables that lead to different physical
forms of drought, such as meteorological, hydrological, and agricultural droughts. Therefore, we propose
to develop a multivariate drought index (MDI) that will utilize information from hydroclimatic variables,
including precipitation, runoff, evapotranspiration and soil moisture as indicator variables, thus account-
ing for all the physical forms of drought. The entropy theory was utilized to develop this proposed index,
that led to the smallest set of features maximally preserving the information of the input data set. MDI
was then compared with the Palmer drought severity index (PDSI) for all climate regions within Texas for
the time period 1950–2012, with particular attention to the two major drought occurrences in Texas, viz.
the droughts which occurred in 1950–1957, and 2010–2011. The proposed MDI was found to represent
drought conditions well, due to its multivariate, multi scalar, and nonlinear properties. To help the user
choose the right time scale for further analysis, entropy maps of MDI at different time scales were used as
a guideline. The MDI time scale that has the highest entropy value may be chosen, since a higher entropy
indicates a higher information content.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Droughts are the costliest of all natural disasters with an esti-
mated annual loss of $6–8 billion in the United States (Wilhite,
2000) and collectively affects more people than any other natural
disaster. Thus, there is a need for developing a system to quantify,
monitor and predict droughts (Mishra and Singh, 2011). However,
given the wide variety of sectors affected by drought and its
diverse geographical and temporal distribution, it is difficult to
develop a single, precise definition for drought.

Droughts are classified into four categories: meteorological or
climatological, agricultural, hydrological, and socioeconomic (The
American Meteorological Society, 2004; Mishra and Singh, 2010).
A prolonged deficit in precipitation leads to meteorological
drought. A dryness in the surface layers (root zone), which occurs
at a critical time during the growing season, can result in an

agricultural drought that severely reduces crop yield, even though
deeper soil levels may be saturated. The onset of an agricultural
drought may follow a meteorological drought, depending on the
prior moisture status of the surface soil layers. Precipitation defi-
cits over a prolonged period that affect surface or subsurface water
supply, thus reducing streamflow, groundwater, reservoir and lake
levels, may lead to a hydrological and ground water drought, which
will persist long after a meteorological drought has ended (Heim,
2002). The ground water drought, can be different from hydrolog-
ical drought due to the involvement of complex hydrological pro-
cesses (Mishra and Singh, 2010). Socioeconomic drought
associates the supply and demand of some economic goods with
certain elements of meteorological, agricultural, and hydrological
droughts. The relationship between hydroclimatic variables and
different types of droughts is complex and hence it is difficult to
develop an accurate index to quantify and compare droughts.

Currently, there exist a number of drought indices that are used
to represent different types of droughts. Some of the earlier
drought indices include: Munger’s Index (Munger, 1916),
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Blumenstock’s Index (Blumenstock, 1942), and Antecedent Precip-
itation Index(McQuigg, 1954) which are all basically precipitation
based indices. In 1965, Palmer (1965) introduced the widely pop-
ular Palmer Drought Severity Index (PDSI) which is based on pre-
cipitation and temperature as input variables in a water budget
model. Despite its wide usage, it has several limitations like lack
of physical meaning, slowness in detecting the onset of drought
events, unclear temporal scale and problems with Thornthwaite’s
method used for calculation of PDSI. McKee et al. (1993) intro-
duced another popular drought index named as Standardised Pre-
cipitation Index (SPI). SPI has several advantages like comparability
among various locations, and wide range of time scales ranging
from 1-month to 24-months. However, multiple SPIs with various
time scales may also lead to confusion in assessment of drought
condition. Similar to SPI, there are other indices like Standardized
Runoff Index (SRI; Shukla and Wood, 2008) and Standardized
Streamflow Index (SSFI; Modarres, 2007) which use runoff and
streamflow as drought indicator variables. Other commonly used
indices include Crop Moisture Index (CMI; Palmer, 1968) for agri-
cultural drought, Vegetation Condition Index (VCI; Kogan, 1995),
Climate prediction center (CPC) Soil Moisture Index (SMI; Huang
et al., 1996), and Standardized Precipitation Evapotranspiration
Index (SPEI; Vicente-Serrano et al., 2010).

All of these indices consider one specific physical form of
drought: hydrological, meteorological, or agricultural. This might
not be adequate to get a comprehensive idea of the drought condi-
tion since it is dependent on multiple variables. Hence, in general it
can be concluded that the drought status indicated by one drought
index might not be consistent with the findings obtained while
using a different drought index.

To overcome these limitations, a group of indices that consider
multiple variables to represent drought were developed. The
drought monitor developed by Svoboda et al. (2002) considers an
Objective Blend of Drought Indicators (OBDI) which is the linear
weighted average of several drought indices. Aggregated Drought
Index (ADI; Keyantash and Dracup, 2004) comprehensively consid-
ers all physical forms of drought through variables like precipita-
tion, streamflow, evapotranspiration, reservoir storage, soil
moisture content and snow water content. ADI aggregates all these
variables into a single time series through principal component
analysis (PCA). However, the use of PCA has several limitations like
linearity assumption in data transformation, and the assumption
that most information is contained in those directions where input
data variance is maximum. These assumptions however need not
be always met in reality. Recently, bivariate drought indices have
been derived using copulas to quantify the joint behavior of
drought types. Kao and Govindaraju (2010) introduced a Joint
Drought Index (JDI) using copula for obtaining the joint probabili-
ties while considering precipitation and streamflow. Hao and
AghaKouchak (2013b) introduced Multivariate Standardized
Drought Index (MSDI) which uses copula to form joint probabilities
of precipitation and soil moisture content. The use of copula for
multivariate analysis is, no doubt, highly effective. However, for
higher dimensional cases (i.e., more than three variables), this
method will not be a feasible choice due to the lack of flexibility
in modeling the dependence structure.

Feature extraction technique is an effective approach to aggre-
gate the various drought types into a single index. The PCA, which
has been commonly used in hydrology and water resources, is a
popular technique that falls under the class of linear feature
extraction models. Over time, other techniques were developed,
which tackled the non-linearity problem through local approaches
(Roweis and Saul, 2000), neural networks (Kramer, 1991), or kernel
algorithms (Scholkopf et al., 1999). The kernel based methods, like
the kernel principal component analysis (KPCA) and kernel partial
least squares (KPLS), have attracted a lot of attention, particularly

in the last decade as an effective non-linear approach for dimen-
sionality reduction. These methods target at finding projections
that maximize the variance of input data in the feature space.
However, the method assumes that the maximum information that
can be obtained from the input data is oriented along the direction
of maximum variance. It has been proved that entropy is a much
better measure of information than variance (Dionisio et al.,
2007). Entropy is related to the higher order moments of a distri-
bution, and thus, unlike the variance, it can offer a better character-
ization of the input data, since it uses more information from the
probability distribution (Ebrahimi et al., 1999).

The objective of this study, therefore, is to make use of a kernel
entropy component analysis (KECA) for extracting a drought index
named as multivariate drought index (MDI) from the set of input
variables representing the various physical forms of drought. We
consider the variables: precipitation (P), runoff (R), evapotranspira-
tion (ET), and soil moisture (SM), thus accounting for all the major
elements in the water balance model. The method is essentially a
novel feature extraction technique that combines the concept of
entropy and KPCA. The KECA or entropy PCA performs dimension-
ality reduction by projecting the data onto those kernel principal
component axes that maximally contribute to the entropy estimate
of the input dataset. These axes will not necessarily correspond to
the top eigenvalues or eigenvectors of the kernel matrix, as in the
case of KPCA (Jenssen, 2010). The KECA thus overcomes the disad-
vantages of PCA and KPCA. The advantages of KECA include: (1) It
does not make the linearity assumption; (2) final multivariate
index is obtained in such a way that it preserves the entropy of
the input data, which means it tries to preserve the maximum
amount of information of the input data; and (3) unlike KPCA, it
does not make the assumption that the maximum information
from the input data is oriented along the direction of maximum
variance. KPCA essentially preserves only the second order statis-
tics of data set, whereas KECA preserves the higher order statistics
also through the use of entropy. Additionally, this study also
explored the multiscalar nature of MDI by comparing the entropy
values of different temporal scales. This would guide the user to
choose the most suitable time scale required for further analysis
or decision making.

The paper is organized as follows. The second section deals with
the study area. Section three discusses data, its sources and the
description of the model used for simulating the input variables.
The methodology is described in section four, followed by results
in the fifth section. The sixth section discuss the results and the
conclusions drawn from the study.

2. Study area

The study area considered is the state of Texas in the USA. It is
the second largest state in United States with a total land area of
261,914 square miles. Because of its size and geographical location,
the state has a diverse climate ranging from arid to subtropical
humid. There are five distinct climate zones in Texas, namely arid,
semi-arid, continental steppe, sub-tropical semi-humid and sub-
tropical humid zones. The basic climatic pattern within Texas is
fairly simple: annual mean temperature increases from north to
south and annual mean precipitation increases from west to east.
Hot spots are found in Rio Grande and Red River Basin, whereas
the mountains in west Texas experience the coolest summertime
temperatures (Nielson-Gammon, 1995). The varied physiography
in Texas from forests in the east and coastal plains in the south
to the elevated plateaus and basins in the north and west results
in a wide variety of weather throughout the year (Benke and
Cushing, 2005). The land surface elevation follows a decreasing
trend from west to east, with arid climate zone covering higher
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