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s u m m a r y

This study develops configurational entropy theory (CET) for monthly streamflow forecasting. The theory
is comprised of three main parts: (1) determination of spectral density (2) determination of parameters
by cepstrum analysis, and (3) extension of autocorrelation function. Comparison with the Burg entropy
theory (BET) shows that CET yields higher resolution spectral density with more accurate location of
spectral peaks. Cepstrum analysis yields more accurate parameters than the Levinson algorithm in the
autoregressive (AR) method and the Levinson–Burg algorithm in BET. CET is tested using monthly
streamflow data from 19 river basins covering a broad range of physiographic characteristics. Testing
shows that CET captures streamflow seasonality and satisfactorily forecasts both high and low flows.
High flows are satisfactorily forecasted with the coefficient of determination (r2) higher than 0.92 for
one year ahead of time, with r2 higher than 0.85 for two years ahead of time, and up to 60 months ahead
with r2 higher than 0.80. However, low flows are forecasted with r2 higher than 0.50 for one year ahead
time. When relative drainage area is considered for analyzing streamflow characteristics and spectral
patterns, it is found that upstream streamflow is forecasted more accurately (r2 = 0.84) than downstream
streamflow (r2 = 0.75). Residuals of forecasted values relative to observed values are found to follow
normal distribution.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Streamflow forecasting is needed for river training and manage-
ment, river restoration, reservoir operation, power generation, irri-
gation, and navigation. Time series analysis is often used for
forecasting monthly streamflow (Hipel and McLeod, 1994;
Noakes et al., 1985). Monthly streamflow time series are stochastic
but exhibit seasonal and periodic patterns. Revealing the correct
seasonality and correlation structure are two main aspects of fore-
casting streamflow. Spectral analysis is applied to characterize pat-
terns of streamflow variation (Labat et al., 2005; Smith et al., 1998),
identify the periodicity of streamflow (Cengiz, 2011; Hameed,
1984; Sang et al., 2009, 2012), analyze streamflow discontinuity
(Adamowski and Prokoph, 2014), separate base flow (Eckhardt,
2005; Spongberg, 2000), and examine the climatic influence on
streamflow variability (Andreo et al., 2006; Kuhnel et al., 1990;
Prokoph et al., 2012). Thus, spectral analysis permits to extract sig-
nificant information for understanding the streamflow process and
prediction thereof (Fleming et al., 2002; Ghil et al., 2002; Labat,
2005; Marques et al., 2006; Molenat et al., 1999). For forecasting

streamflow, spectral analysis has, however, not yet been widely
applied.

Burg (1975) defined entropy in the frequency domain and
developed what is now called Burg entropy theory (BET). He
applied the theory to develop ‘‘maximum entropy spectral analysis
(MESA)’’ for time series forecasting. MESA is used to extend auto-
correlation in a manner that maximizes the entropy of the under-
lying process. For a stationary random process BET computes
spectral power from autocorrelation of given lags, without assum-
ing autocorrelation of unknown lags as zero (Edward and Fitelson,
1973). It has been widely applied to spectral analysis of geomag-
netic, climate indices, surface air temperature, tide levels, precipi-
tation and runoff series (Currie, 1973; Dalezios and Tyraskis, 1989;
Ghil et al., 2002; Hasanean, 2001; Padmanabhan and Rao, 1988;
Pardo-Iguzquiza and Rodriquez-Tovar, 2006; Sang et al., 2009,
2012; Tosic and Unkasevic, 2005; Wang et al., 2004). BET has also
been employed for long-term streamflow forecasting and real-time
flood forecasting (Krstanovic and Singh, 1991a,b, 1993a,b) and has
been shown to have an advantage in long-term streamflow fore-
casting over traditional stochastic methods, but has not been found
to be superior for short-term forecasting.

Spectral analysis, based on minimum relative entropy (MRE),
also called minimum cross-entropy (MCE), was developed by
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Shore (1979, 1981). The MRE-based spectra are reported to have
higher resolution and are more accurate in detecting peak location
than other methods for spectral computation (Papademetriou,
1998). However, this method has only been applied for forward
modeling and for solving inverse problems in groundwater
(Woodbury and Ulrych, 1993, 1996, 1998), but has not been
applied to surface hydrology yet.

Frieden (1972) was the first to use configurational entropy in
image reconstruction and Gull and Daniell (1978) applied it to
radio astronomy. Configurational entropy was later applied for
spectral analysis and shown to have better resolution than BET
for autoregressive moving average (ARMA) and moving average
(MA) processes, and comparable to BET for the autoregressive
(AR) process (Nadeu et al., 1981). On the contrary, Burg entropy
appears to be better for white noise, as suggested by experiments
on speech synthesis (Johnson and Shore, 1983; Katsakos-
Mavromichalis et al., 1985). However, neither an explicit solution
nor an equivalent extrapolating model had been developed until
Wu (1983) used cepstrum analysis to derive an explicit solution
for the extended Burg entropy or configurational entropy. This
study draws from the study by Wu (1983) for developing the con-
figurational entropy theory (CET) for streamflow forecasting with
parameter estimation by cepstrum analysis.

2. Background

There exists a multitude of methods for streamflow forecasting,
including deterministic as well as stochastic. Deterministic meth-
ods include rainfall–runoff models (Singh, 1988; Wang et al.,
2011); watershed models (Singh, 1995; Singh and Frevert,
2002a,b, 2006), such as the simulation hydrology model (SIMHYD)
(Chiew et al., 2002), the Systeme Hydrologique Europeen (SHE)
(Abbott et al., 1986), TOPMODEL (Beven and Freer, 2001; Beven
et al., 1984) and hydrologic model based ensemble streamflow pre-
diction framework (Cloke and Pappenberger, 2009; Wood et al.,
2005). For most of the deterministic methods, streamflow is fore-
casted by simulating soil moisture and groundwater storage with
future rainfall, and the accuracy is highly dependent on the deter-
mination of initial catchment state (Wood and Lettenmaier, 2008)
and forecasting of rainfall is highly uncertain. Streamflow entails a
high degree of stochasticity which makes it difficult to forecast
streamflow entirely deterministically. In hydrology, stochastic
methods, primarily based on time series analysis, are usually
employed for forecasting future events and determining the distri-
bution of errors in forecasts.

Time series analysis uses past observed values to forecast future
values by a cause-and-effect approach or self-projecting approach.
The cause-and-effect approach generates bi-variate or multivariate
analysis by linking the series to be forecasted to one or more other
series to which it is related. For instance, streamflow forecasting
can be generated with climate indicators in two approaches.
Wang et al. (2009) used a dynamic climate model to produce rain-
fall for forecasting seasonal streamflow by the Bayesian joint prob-
ability. Otherwise, statistical relationship between climate
variables can be proposed for long term forecasting (Chiew and
McMahon, 2002; Sharma, 2000; Sharma et al., 2000; Westra
et al., 2008). Involving climate indicators, a longer and more flexi-
ble range of forecasting can be made, but the result is sensitive to
the predictors so they should be carefully chosen. On the contrary,
the self-projecting approach entails univariate analysis and uses
only past data to uncover its correlation to forecast future values.
It has been widely applied for streamflow forecasting during last
decades. The autoregressive (AR) and autoregressive moving aver-
age (ARMA) methods are mathematically the simplest for time
series forecasting, but their application is limited (Carlson et al.,

1970; Haltiner and Salas, 1988; Jones and Brelsfor, 1967; Salas
and Obeysekera, 1982). For periodic forecasting, periodic autore-
gressive moving average (PARMA) or periodic autoregressive
(PAR) method (Noakes et al., 1985; Salas and Obeysekera, 1992)
is recommended, and seasonal autoregressive and moving average
(SARMA) or seasonal autoregressive (SAR) method (Salas et al.,
1982) is designed for seasonal forecasting. Its integrated version,
referred to as autoregressive integrated moving average (ARIMA)
(Frausto-Solis et al., 2008), is used for non-stationary flow; with
exogenous input, ARMA can be even extended to forecast stream-
flow generated by rainfall or snowmelt (Hannan and Kavalieris,
1984). However, the underlying linear assumption of ARMA or
AR method is not entirely valid (Elshorbagy et al., 2002). In addi-
tion to AR and ARMA methods, Kalman filter was used for both
long-term seasonal and short-term forecasting, but all parameter
matrices must be known (Jimenez et al., 1989; Kalman, 1960).
The nonparametric nearest neighbor method performs better than
ARMA in one-step ahead daily discharge forecasting (Galeati, 1990)
or is equivalent to ARMA for real-time flood forecasting (Toth et al.,
2000). However, the nearest neighbor method is suited for large-
sample time series and is limited to predict the values no higher
than historic observations (Galeati, 1990; Karlsson and Yakowitz,
1987; Toth et al., 2000). For short-term streamflow forecasting,
the artificial neural networks (ANN) or support vector regression
(SVR) method has an advantage over the above methods, but nei-
ther of them provides an explicit characterization and is unable
to quantify physical conditions (Behzad et al., 2009; Frausto-Solis
et al., 2008; Wu et al., 2009). The accuracy in forecasting short-
term streamflow can be increased by wavelet analysis in conjunc-
tion with ANN or SVR, though it is limited to a lead time less than a
week (Adamowski, 2008; Kisi, 2009, 2010; Pramanik et al., 2011;
Shiri and Kisi, 2010).

The above time series methods are preferable under different
conditions but have limited application. The AR method plays a
significant role in the time series analysis, as it provides a basis
for forecasting. Besides, AR method uses the Durbin–Levinson algo-
rithm or Levinson algorithm, a recursive solution, to determine the
coefficients of AR by solving the Yule–Walker equations. Later,
Burg improved the recursive method to compute the AR parame-
ters through MESA, which is called Levinson–Burg algorithm. It
has an advantage in terms of computational ease, short and
smooth spectra with a high degree of resolution, and the robust-
ness and stability of estimates (Burg, 1967, 1975). However, both
the Levinson algorithm and the Burg–Levinson algorithm are
developed for stationary time series, for monthly streamflow with
strong seasonal and periodic characteristics, the algorithm some-
times not work well (Boshnakov and Lambert-Lacroix, 2012).
Besides, BET has lower resolution in determining multi-peak spec-
tra, while monthly streamflow hardly possess only one periodicity.
Thus, this paper introduces an entropy based efficient method,
which is generally applicable to forecast streamflow under differ-
ent conditions and is capable for characterizing seasonality.

The objective of this study is, therefore, to develop configura-
tional entropy theory (CET) for streamflow forecasting that con-
sists of three main parts: (1) determination of spectral density,
(2) determination of parameters using cepstrum analysis, and (3)
extension of autocorrelation function. The spectral density is
obtained by maximizing the configurational entropy subject to
autocorrelations. The maximum entropy-based spectral density
contains Lagrange multipliers as parameters that are determined
by cepstrum analysis. The autocorrelation function is extended
by maximizing entropy for streamflow forecasting. Most forecast-
ing methods emphasize high streamflows while low streamflow
has seldom been discussed. In this study, monthly streamflows,
both high flows and low flows, are forecasted with configurational
entropy theory. The paper is organized as follows. Providing a short
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