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s u m m a r y

The flow behavior in smooth and artificial rough fractures is experimentally investigated. The piezomet-
ric head is measured at several positions to determine experimentally the head gradient through a
sophisticated procedure, and the hypothesis of one-dimensional flow is verified. It is demonstrated that
both the Forchheimer and Izbash equations adequately describe the flow conditions, and proper coeffi-
cients for these equations are estimated. The experimental results are also used to construct a Moody-
type diagram, where a non-monotonic dependence is shown to characterize the friction factor – Reynolds
number relationship in the transition between laminar and weak turbulent flow.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction and background

Flow in fractures is an important issue in several disciplines,
including water resources management (Papadopoulou et al.,
2010), contaminant pollution control (Masciopinto et al., 2010),
exploitation of geothermal fields (Kohl et al., 1997; Cheng et al.,
2001; Radilla et al., 2012), and radioactive waste sequestration
(Fillion and Noyer, 1996), among others. Therefore, the mathemat-
ical description of the above mentioned flow processes is crucial in
order to prevent pollution or to properly manage natural resources
(Masciopinto et al., 2010).

The simplest approach is to assume that the fracture walls are
two smooth parallel plates, creating a narrow gap. At the micro-
scopic level, the flow between the plates is described by the
Navier–Stokes equations, which, when neglecting the non-linear
inertial terms in the case of creeping flows (i.e., flows for which
the inertia effects are negligible), reduces to Stokes equations. It

is easy to demonstrate (e.g., Munson et al., 1998; Polubarinova-
Kochina, 1962) that for this problem, at the macroscopic level,
the flow is described by a Darcy-type equation, which reads in
the case of one-dimensional flow:

V ¼ �KJ; ð1Þ

where V is the bulk velocity [m/s], J is the piezometric head gradient
[–], and K is the hydraulic conductivity [m/s]. In the smooth plate
case investigated herein, the hydraulic conductivity is given by
K = w2g/12m (Polubarinova-Kochina, 1962), where w is the plate
aperture [m], B is the plate width (w� B), g is the gravity acceler-
ation [m/s2], and m is the kinematic viscosity [m2/s]. The gradient
J can be expressed by the relation J ¼ @h=@x, where h is the piezo-
metric head [m], and x is the spatial coordinate [m].

Equivalently to Eq. (1), for creeping flows taking place between
two smooth plates, the magnitude of the flow rate Q [m3/s] is pro-
portional to the cubic power of the fracture aperture, a relation
which is described as the Local Cubic Law (LCL) (Polubarinova-
Kochina, 1962; Brush and Thomson, 2003):

QLCL ¼ �
w3Bg
12m

J: ð2Þ
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However, it is accepted that the LCL is not always adequate to
describe the flow behavior in natural fractures. The reason for this
is that at least one of the two conditions cited above (i.e., the chan-
nel geometry and the flow regime) does not usually hold.

Both Gutfraind and Hansen (1995), using the Lattice-Gas
Automaton approach, and Skjetne et al. (1999), using the Finite Dif-
ference Method, solved the Navier–Stokes equations, and investi-
gated numerically flow processes in fractures, assuming that they
can be simulated as a rough conduit bounded by a self-affine sur-
face, an approach that is compatible with the findings of Odling
(1994) and Kulatilake et al. (2006). Gutfraind and Hansen (1995)
concluded that at low velocities (i.e., small Reynolds numbers),
‘‘pressure drop and velocity are linearly related’’ (a conclusion that
is compatible with the findings of Skjetne et al., 1999) or equiva-
lently, the flow behavior could be described at the macroscopic
scale by the Darcy law. At larger Reynolds numbers, deviations
from this linear behavior occur, and Eqs. (1) and (2) do not hold.
Skjetne et al. (1999) proposed the quadratic Forchheimer equation
in order to describe this non-linear behavior:

�J ¼ aV þ bV jV j; ð3Þ

where a and b are appropriate coefficients. Eq. (3) is widely used to
describe the inertial flow behavior in porous media (Venkataraman
and Rao, 1998; Sidiropoulou et al., 2007; Moutsopoulos et al., 2009).

For creeping flow conditions, the quadratic term on the right
hand side of Eq. (3) becomes negligible, and this equation reduces
to the Darcy law (Eq. (1)), where a = 1/K. On the contrary, for high
velocity flows, a fully developed turbulence regime is established,
so that head losses induced by the linear term on the right hand
side of Eq. (3) are not important (Burcharth and Andersen, 1995;
Kohl et al., 1997; Moutsopoulos and Tsihrintzis, 2005;
Moutsopoulos, 2007, 2009). Thus, by assuming that the flow occurs
in the positive x-direction, the bulk velocity can be expressed by
the following relation:

V ¼
ffiffiffiffiffiffi
�J

p
=
ffiffiffi
b
p

: ð4Þ

Moutsopoulos and Tsihrintzis (2005) and Moutsopoulos (2009)
demonstrated that the use of Eq. (4) is pertinent, at small times, if
an abrupt change of the head is imposed at one edge of a porous
medium or fracture, or a flow rate is injected into an initially dry
fracture.

As stated by Yeo et al. (1998), a drawback of the 2D approach
used by Gutfraind and Hansen (1995) and Skjetne et al. (1999) is
that the aperture of natural fractures varies in all directions.
Therefore, the head losses occurring at narrow restrictions of the
conduits predicted by two-dimensional geometries are overesti-
mated. Skjetne et al. (1999) admitted that for 3D geometries, ‘‘nar-
row constrictions have less importance as the flow simply passes
around them’’. Therefore, a more realistic, 3D description of the
flow domain was adopted by Brush and Thomson (2003), who used
knowledge obtained from modern laboratory methods concerning
geometric characteristics of void spaces to develop a random frac-
ture generation algorithm. They solved both the Navier–Stokes and
Stokes equations for flow in ‘‘synthetic’’ 3D conduits by the finite-
volume-method. Flow covered a large spectrum of Reynolds
numbers ranging from 10�2 to 103. They also concluded that the
influence of the inertial terms can be neglected (and subsequently
the Stokes equation is valid) in the case when three geometric and
kinematic conditions are satisfied, which include the constraint
that the Reynolds number is smaller than one. The simulation
results also demonstrated that the total flow rates predicted by
the corrected LCL (where an adequate mean value for the aperture
was used) were within 10% of those computed using the Stokes
equation. Nevertheless, the authors pointed out that in cases of
high Reynolds numbers, the flow rates obtained using the full

Navier–Stokes equations (QNS) were smaller than the corresponding
values obtained by using the Stokes equation (QS). This effect was
most pronounced in cases of high values of the fracture roughness.
The minimum computed value of QNS/QS was approximately 0.4.

The findings of Brush and Thomson (2003), that according to
the flow conditions the pressure drop in fractures can be described
by either a linear or a non-linear relation (i.e., either Eq. (1) or Eq.
(3)), are confirmed by in-situ observations. Cappa et al. (2005) con-
ducted field experiments in a shallow fractured carbonate reser-
voir rock, in order to investigate hydromechanical coupled
processes, and demonstrated that the flow behavior inside frac-
tures can be simulated by a Darcy-type linear law. Explicit values
for the hydraulic conductivity of fractures are provided by the
authors. On the contrary, non-linear, non-Darcy flow conditions
were observed by Kohl et al. (1997), who analyzed injection tests
at a geothermal research site in France. They reported that fully
developed turbulent flow conditions occurred and that the flow
behavior in a single fracture could be described by Eq. (4).

In experiments conducted in situ, detailed knowledge of the
geometric features of fractures is not possible, and also knowledge
of hydraulic characteristics are often limited, because measure-
ments are possible at only a few points. For this reason, several lab-
oratory experiments have been conducted in order to investigate
flow processes in fractures.

For the description of fluid flow behavior in replicas of the sur-
face of a natural fracture in a red Permian sandstone, Zimmerman
et al. (2004) proposed the use of the Forchheimer equation at Rey-
nolds numbers above 10. Their experimental results were con-
firmed by solving numerically the Navier–Stokes equation for the
same flow regime.

The adequacy of the Forchheimer law to describe flow in frac-
tures was reported by Nowamooz et al. (2009) on the basis of
results obtained in a replica of a fracture. Radilla et al. (2013) inves-
tigated experimentally the flow in transparent replicas of a granite
fracture and a Vosges sandstone fracture. In the case of single-phase
flow and for relatively small Reynolds numbers (Re < 1), the exis-
tence of a ‘‘weak inertial regime’’ was confirmed, where the energy
losses due to inertia effects are proportional to the third power of
velocity, a result which is compatible with the numerical study of
Skjetne et al. (1999). Nevertheless, the experimental results indi-
cated that, at higher values of Re, the use of the Forchheimer equa-
tion is adequate. The adequacy of the Forchheimer law to describe
the flow behavior inside artificially created fractures in a bench-
scale experiment was also reported by Cherubini et al. (2012).

Zhang and Nemcik (2013) investigated the flow behavior in
fractures, which were created in the laboratory by splitting into
half initially intact samples of a fine grain sandstone block. The
hydraulic behavior of both ‘‘mated’’ and ‘‘non-mated’’ fracture
samples was investigated. Non-mated samples involved two frac-
ture halves displaced by 2 mm along the flow direction, creating
a reduced number of contact asperities. The effects of both confin-
ing stress and velocity were also examined. They found that a non-
linear flow regime is more likely to occur in non-mated fractures,
due to enlarged apertures, in comparison to mated fractures.
Zhang and Nemcik (2013) used the Izbash law, in addition to the
Forchheimer equation, to describe the inertial flow effects. The
Izbash law, usually used to describe flow processes in porous
media (Yamada et al., 2005; Moutsopoulos et al., 2009; Sedghi-
Asl et al., 2014), is:

J ¼ �kVn: ð5Þ

Eq. (5) reduces to the Darcy law (Eq. (1)) for n = 1, and to Eq. (4),
describing fully developed turbulent flow, for n = 2. The coefficient
k can be thought to be an equivalent hydraulic resistance
coefficient. For n = 1 (Darcy flow case) k = 1/K, while for n = 2 (fully
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