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Accurate forecasts of hourly rainfall are necessary for early warning systems during typhoons. In this
paper, a typhoon rainfall forecasting model is proposed to yield 1- to 6-h ahead forecasts of hourly rain-
fall. First, an input optimization step integrating multi-objective genetic algorithm (MOGA) with support
vector machine (SVM) is developed to identify the optimal input combinations. Second, based on the
results of the first step, the forecasted rainfall from each station is used to obtain the spatial character-
istics of the rainfall process is presented. An actual application to Tsengwen river basin is conducted to
demonstrate the advantage of the proposed model. The results clearly indicate that the proposed model

Editor effectively improves the forecasting performance and decreases the negative impact of increasing fore-
cast lead time. The optimal input combinations can be obtained from the proposed model for different
Keywords: stations with different geographical conditions. In addition, the proposed model is capable of producing

more acceptable the results of rainfall maps than other model. In conclusion, the proposed modeling
technique is useful to improve the hourly typhoon rainfall forecasting and is expected to be helpful to
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support disaster warning systems.
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1. Introduction

Rainfall forecasting is one of the most important issues in
hydrologic research since early warnings of severe weather can
help prevent damages and life-threatening casualties caused by
serious natural disasters. Accurate and effective forecasts of hourly
rainfall are crucial for hourly reservoir inflow forecasting, flooding
prevention and making important reservoir operation. Many previ-
ous studies have been conducted on rainfall forecasting using a
variety of techniques, such as numerical weather prediction mod-
els (Nunes and Cocke, 2004; Diomede et al., 2008; Boniface et al.,
2009; He et al., 2013; Ushiyama et al., 2014), quantitative precipi-
tation forecast (Grecu and Krajewski, 2000; Ganguly and Bras,
2003; Ramirez et al., 2005; Valverde et al., 2014), and the applica-
tions of radar and satellite precipitation products (Grecu and
Krajewski, 2000; Sheng et al., 2006; Liu et al., 2008; Moreno
et al., 2012; Chen et al., 2013b; Chang et al., 2014).

The heavy rainfall caused by typhoons frequently result in seri-
ous disasters. Obviously, the typhoon rainfall forecasting influ-
ences disaster mitigation and emergency operations. Effective
forecasts of hourly rainfall during typhoons are needed for issuing
flood warnings. Therefore, to improve the accuracy of typhoon
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rainfall forecasts is always an important task of flood management.
However, typhoon rainfall is a highly nonlinear and extremely
complex physical process. A physically-based mathematical model
is difficult to be developed for typhoon rainfall forecasting because
of its tremendous variability over a wide range of space and time
scales. It involves many complicated variables which are intercon-
nected, and the volume of rainfall calculation require sophisticated
mathematical tool (Luk et al., 2001; Nasseri et al., 2008). Hence, it
is not a feasible alternative in most cases.

An alternative to the physically-based models is artificial neural
networks (ANNs), which is a kind of information processing system
with good flexibility in modeling nonlinear processes. The ASCE
Task Committee (2000a,b) and Maier and Dandy (2000) have pre-
sented comprehensive reviews of the applications of ANNs in
hydrology. ANN-based models have been proposed for reservoir
operation (e.g., Deka and Chandramouli, 2009; Wang et al,
2010), reservoir inflow forecasting (e.g., Lin et al., 2009a, 2010),
flood forecasting (e.g., Chen et al., 2013a; Lin et al,, 2013a; Pan
et al., 2013; Lohani et al., 2014), and rainfall forecasting (e.g., Lin
and Chen, 2005; Lin and Wu, 2009; Lin et al., 2009b; Srivastava
et al., 2010; Mekanik et al., 2013; Chang et al., 2014). Hourly rain-
fall forecasting during typhoons has drawn attention in recent
years. For example, Lin and Chen (2005) used an ANN model to
forecast 1-h ahead forecasts of typhoon rainfall. Lin and Wu
(2009) proposed a hybrid neural network model which combines
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the self-organizing map (SOM) with the multilayer perceptron net-
work (MLPN) to improve the accuracy of hourly typhoon-rainfall
forecasts. In addition, Lin et al. (2009b) constructed a support vec-
tor machine (SVM)-based model with typhoon characteristics to
yield 1- to 6-h ahead forecasts of hourly typhoon rainfall.

Furthermore, one of the most important steps in the ANN mod-
eling of the rainfall forecasting is the determination of significant
input variables. In general, not all potential variables are used as
input to the model because some may be noisy or have no signifi-
cant relationship with the output variable. Hence, to determine
significant input variables plays an important role in the ANN mod-
eling process. More recently, an optimization method called multi-
objective genetic algorithm (MOGA) has increasingly been applied.
The capabilities of MOGAs to explore and discover Pareto-optimal
fronts on multi-objective optimization problems have been well
recognized (Deb et al., 2002; Liu, 2009). Prasad and Park (2004)
presented a multi-objective genetic algorithm approach to the
design of a water distribution network. Reddy and Kumar (2006)
derived a set of optimal operation policies for a multipurpose res-
ervoir system using multi-objective evolutionary algorithm. Reed
and Minsker (2004) demonstrated the use of high-order Pareto
optimization on a long-term groundwater monitoring application.
Several hybrid methods, especially a combination between a
MOGA and a SVM, have been implemented to optimize parameters
in many fields (e.g. Giustolisi, 2006; Wu et al., 2009; Zhang et al.,
2010). Giustolisi (2006) employed a MOGA to construct an optimal
SVM. A support vector machine’s performance depends on the ker-
nel parameter and input selection, and these are used as decision
variables for the evolutionary strategy based on a MOGA. Lin
et al. (2013b) proposed a model integrating MOGAs and SVMs to
improve hourly typhoon rainfall forecasting on a reservoir scale
for only two point-scale ground rain gauges. In this paper, 20 mete-
orological and rainfall stations are used on a catchment scale. More-
over, the main difference between the previous work and this paper
is that the spatial characteristics of the rainfall process are also dis-
cussed to demonstrate the performance of the proposed model.

The objective of this paper is to develop a typhoon rainfall fore-
casting model to yield 1- to 6-h ahead forecasts of hourly rainfall.
The spatial characteristics of the rainfall process are also presented.
An actual application to Tsengwen river basin is conducted to dem-
onstrate the superiority of the proposed model, and the accuracy of
the proposed model is discussed in depth to demonstrate its supe-
riority. The paper is organized as follows. The details of the pro-
posed forecasting technique are presented in Section 2. Section 3
provides the description of the study area and data. Section 4
shows the results, including the performance of the proposed
model in the upstream and downstream regions, the optimal input
combinations, and the spatial characteristics of the rainfall process
for hourly typhoon rainfall forecasting. Finally, the summary and
conclusions are given in Section 5.

2. The proposed forecasting technique

The input optimization that SVM is integrated with MOGA is to
identify the optimal input combinations for decreasing the rela-
tively irrelevant input information. Then, according to the results
derived from models, the forecasted rainfall from each station is
used to obtain the spatial characteristics of the rainfall process is
presented. Details of the proposed forecasting technique are
described as follows.

2.1. Input optimization

Because rainfall and some meteorological data are used as input
to models, how to determine the lag lengths of input variables is

very important. Thus, the training procedure by using several types
of optimization methods is considered. In multi-objective genetic
algorithms (MOGAs), the domination concept is applied to deter-
mine the Pareto-optimal solutions. In the domination concept, a
comparison is made to determine whether one solution dominates
the other or not. A set of Pareto-optimal solutions in a single run of
the algorithm can be captured by MOGAs. Hence, MOGAs are espe-
cially appropriate to solve the multi-objective nonlinear optimiza-
tion problems.

2.1.1. Objective functions and the fitness values

The evaluation of the fitness value of a chromosome is based on
the objective function. The fitness value of a chromosome means
the level of the goodness of the chromosome with respect to the
training. Nonetheless, the better chromosome should be expressed
by a larger fitness value, and the fitness values should be nonneg-
ative (Goldberg, 1989). To follow these two conditions, the values
of the objective functions should be transformed properly into the
fitness values. In this paper, two frequently used objective func-
tions are adopted for the training of the proposed model. One is
the mean absolute error (MAE):
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where R; and ﬁt(q)) are respectively the observed and forecasted
rainfall at time ¢, n is the number of forecasts, ¢ is the set of model
inputs to be trained, and N, is the number of typhoon events. The
MAE is nonnegative. For the MAE objective function, the set of
model inputs that minimizes the MAE is the optimal solution.

The other objective function employed to train the proposed
model is the efficiency coefficient (EC):
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where R is the average of the observed rainfall. A larger EC repre-
sents the corresponding inputs set is a better one and otherwise
the inputs set is not appropriate. The model inputs that maximize
the EC are the optimal solution when the EC is employed as the
objective function.

The domination concept can be applied to determine the better
solution between any two solutions. Most MOGAs use the domina-
tion concept to find the Pareto-optimal solutions. A solution Y; is
said to dominate the other solution Y5, if the following conditions
(a) and (b) are satisfied (Deb, 2001): (a) the solution Y; is no worse
than Y; in all objective functions, and (b) the solution Y; is strictly
better than Y, for at least one objective. If one of the above
conditions is not satisfied, the solution Y; does not dominate the
solution Y,. Most MOGAs can find all of the non-dominated solu-
tions that are also called the Pareto-optimal solution by using
the domination concept. In this paper, the objective 1 is MAE,
and the objective 2 is EC.

Generalized Pareto-based scale-independent fitness function
(GPSIFF), which is a simple way to determine the Pareto-optimal
solution, is used herein. GPSIFF evaluates the domination of each
solution by a score function. The score value of a solution Y is cal-
culated according to the following score function:

score (Y)=I—-m+c 3)

where [ is the number of solutions dominated by Y, and m is the
number of solutions which dominate Y. The scaling constant c is
used to obtain a positive fitness value. The GPSIFF concept is
employed to determine the Pareto-optimal solution for the deter-
mination of model inputs. The values of the objective functions
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