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s u m m a r y

The thermodynamically constrained averaging theory (TCAT) is used to formulate a modeling framework
for mechanistic models of species transport in multiphase porous medium systems containing two fluid
phases and a solid phase. Primary restrictions guide the selection of entities and the set of conservation
and balance equations needed to formulate an augmented entropy inequality (EI). Classical irreversible
thermodynamics is upscaled from the microscale to the macroscale and used to provide a connection
among material derivatives that arise from the conservation and balance equations under near-equilib-
rium conditions. An essentially exact constrained EI (CEI) is derived to approach the force-flux form of the
EI that is desired. A set of approximations is applied to the CEI to produce a non-unique simplified EI (SEI),
which is in the strict force-flux form needed to guide the formulation of closure relations.

Sets of secondary restrictions are applied to the general SEI to form simpler subsets of the general SEI
that apply for the local thermal equilibrium and isothermal cases. The SEI is then used to constrain the
permissible form of the closure relations and to formulate a set of low-order closure relations. A specific
model instance is formulated in closed form by specifying a complete set of conservation equations and
closure relations. Many other model instances can be derived from the general modeling framework pre-
sented, and these potential extensions are discussed.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiphase flow and transport processes in porous medium
systems are important for a wide range of environmental, industrial,
and biological applications, such as groundwater contamination,
carbon storage and sequestration, design of filters and insulators,
enhanced gas and oil recovery, transport of nutrients in natural
tissues, and biofilm growth (Aziz and Settari, 1979; Helmig, 1997;
Lake, 1989; Nordbotten and Celia, 2012; Vafai, 2011; Wakeman
and Tarleton, 2005).

Processes important in these applications evolve on multiple
length and time scales, contributing to the complexity of these
systems. One contributing factor to this complexity is the existence
of multiple classes of entities, which include phases, interfaces
between phases, and common curves that form at the boundary
between three phases. Accounting for interfaces and common
curves in the model formulation provides a higher fidelity
representation of the underlying system compared to formulations
based upon conservation equations for phases alone. This is so
because many processes happen across interfaces and along

common curves, e.g., transport of chemical species, momentum,
and energy. Surfactants are known to accumulate at interfaces,
altering the interfacial tension and the morphology of the
boundary between phases. Although these facts are widely
acknowledged, traditional approaches (Bear, 1972; Freeze and
Cherry, 1979; Helmig, 1997) do not account for these lower dimen-
sional entities explicitly in the formulation. Instead, traditional
models of two-fluid-phase porous medium systems are closed
using ad hoc closure relations that must implicitly be dependent
on the unresolved entities through parametric dependence of
constitutive relations. However, these extensions do not have a rig-
orous basis and as a consequence often lead to a non-physical
behavior of the system, such as apparent hysteretic behavior.

The classical approach to apply Fick’s law for modeling species
transport in porous medium systems (Bird et al., 2002; Helmig,
1997), according to which the dispersive mass flux is proportional
to the concentration gradient and independent of the concentration
itself, is successful for dilute solutions and homogeneous porous
media. For some applications the concentration of dissolved sub-
stances is indeed low. However, many porous medium systems
are non-dilute and not sufficiently homogeneous for a Fickian
approximation to be accurate, e.g., brines in aquifers above salt for-
mations, radioactive waste disposal in salt domes, evaporative salt
precipitation, and transport in fractured porous media (Berkowitz
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Nomenclature

Roman lettersbAa interfacial velocity coefficient related to velocity of
fluid phase abBa common curve velocity coefficient related to velocity of
fluid phase a

b entropy body source density
C Green’s deformation tensorbc closure coefficientbD dispersion tensor
d rate of strain tensor, d ¼ rv þ rvð ÞT

h i.
2

E internal energy density
E partial mass energy
Ea�� macroscale entity-based total energy conservation

equation, Eq. (3)
f general scalar function
G geometric orientation tensor, Ga ¼ I� I0a for a 2 J I,

Gwns ¼ I� I00wns
G0

j!a
macroscale transfer rate of potential energy due to var-
iability of mass exchange per volume

Ga�� macroscale entity-based body force potential balance
equation, Eq. (5)

g body force per unit mass, gravity
H partial mass enthalpy
h energy source density
ha

0 macroscale energy source density for entity a due to
body force and velocity fluctuations

I identity tensor
I0 unit tensor in a surface, I0a ¼ I� nbnb for a 2 J I, b 2 J þca
I00 unit tensor in a common curve, I00wns ¼ lwnslwns

IðnÞ unit tensor associated with 3� n-dimensional entity
where ðnÞ is the number of primes used

J set of entity indices
J C set of common curve entities
J ca connected set of indices for entity a, J ca ¼ Jþca [ J�ca
Jþca connected set of indices of one dimension higher than

entity a
J�ca connected set of indices of one dimension lower than

entity a
J f set of fluid-phase indices
J I set of interface indices
J P set of phase indices
J s set of species indices
J snN set of species indices except species N
J nS set of entity indices except the solid phase
Jab
a macroscale surface curvature, Jab

a ¼ hr0 � naiXab ;Xab
for

a; b 2 J f
j Jacobian
KE kinetic energy per mass due to velocity fluctuationsbK M mass transfer coefficientbKh heat conductivity tensor
k̂wn parameter for rate of relaxation of interfacial area
k̂wn

1 parameter for rate of relaxation of interfacial area
k̂wns parameter for rate of relaxation of common curve

length
l unit vector tangent to a common curve

M
ij!ia

macroscale transfer rate of mass of species i in entity j
to species i in entity a per volume

Mia
�� macroscale species mass conservation equation, Eq. (1)

N number of chemical species
n unit normal vector
Pa
�� macroscale entity-based momentum conservation

equation, Eq. (2)

p pressure

Q1

j!a
macroscale transfer rate of internal energy from entity
j to entity a per volume

Q �0
j!a

macroscale energy exchange between entities which
dimensionalities differ by two

q non-advective energy flux
qg0 non-advective energy flux associated with mechanical

processesbR resistance tensor
r mass production rate density

Sa
�� macroscale entity-based entropy balance equation,

Eq. (4)
s saturation

T0

j!a
macroscale transfer rate of momentum from entity j to
entity a per volume

T�
j!a

macroscale momentum exchange between entities
which dimensionalities differ by two

T a
� macroscale Euler equation, Eq. (6), for all entities

except solid, and Eq. (7) for solid phase

T a
G� macroscale body source potential balance equation,

Eq. (8)
t stress tensor
t time

Ua
�� macroscale entity-based internal energy equation,

Eq. (64)

u diffusion/dispersion velocity, uia ¼ via � va;

uia ¼ via � va

V set of variables
v velocity
W weighting function for averaging
w velocity of a domain boundary

Greek letters
c interfacial or common curve lineal tension
� porosity

�a specific entity measure
g entropy density

g partial mass entropy
h temperature
jG geodesic curvature, jGwns ¼ lwns � r00lwns � nws

jN normal curvature, jNwns ¼ lwns � r00lwns � ns

K entropy production rate
k vector Lagrange multiplier
k scalar Lagrange multiplier
l chemical potential
q mass density
r Lagrangian solid-phase stress tensor

U0

j!a
macroscale transfer rate of entropy from entity j to
entity a per volume

U�
j!a

macroscale entropy exchange between entities which
dimensionalities differ by two

u non-advective entropy flux

uws;wn macroscale measure of contact angle

vas
s fraction of the solid surface in contact with fluid phase

a;vas
s ¼ �as �ws þ �ns

� �.
, a 2 J f

W body force potential density
w body force potential per mass
X spatial domain
x mass fraction
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