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s u m m a r y

The optimization of best management practices (BMPs) at the watershed scale is notably complex
because of the social nature of decision process, which incorporates information that reflects the prefer-
ences of decision makers. In this study, a preference-based multi-objective model was designed by mod-
ifying the commonly-used Non-dominated Sorting Genetic Algorithm (NSGA-II). The reference points,
achievement scalarizing functions and an indicator-based optimization principle were integrated for
searching a set of preferred Pareto-optimality solutions. Pareto preference ordering was also used for
reducing objective numbers in the final decision-making process. This proposed model was then tested
in a typical watershed in the Three Gorges Region, China. The results indicated that more desirable solu-
tions were generated, which reduced the burden of decision effort of watershed managers. Compare to
traditional Genetic Algorithm (GA), those preferred solutions were concentrated in a narrow region close
to the projection point instead of the entire Pareto-front. Based on Pareto preference ordering, the solu-
tions with the best objective function values were often the more desirable solutions (i.e., the minimum
cost solution and the minimum pollutant load solution). In the authors’ view, this new model provides a
useful tool for optimizing BMPs at watershed scale and is therefore of great benefit to watershed
managers.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonpoint source (NPS) pollutants are major causes of water
quality impairment. Best management practices (BMPs), as
inherent aspects of watershed management, have been proven to
effectively reduce NPS pollution (Laurent and Ruelland, 2011;
Van Wie et al., 2013). Therefore, it is desirable to select a preferred
set of BMPs for the watershed that would result in the greatest
reduction in pollutant loads for the least cost. The selection and
implementation of BMPs is constrained by objective conditions,
including environmental characteristics and economic and social
factors (Maringanti et al., 2011; Shen et al., 2013; Zare et al.,
2012). A major challenge for multi-objective optimization is the
incorporation of information that reflects the preferences of
watershed managers that is useful in the decision-making pro-
cesses, especially given limited funds and human resources.

The traditional Genetic Algorithms (GA) that have been applied
to various multi-objective problem solving tasks have received a
great deal of attention from decision makers (Deb et al., 2002a;

Hadka and Reed, 2013). The goal of GA is to uncover the interac-
tions between conflicting objectives to find a well-converged and
well-distributed set of Pareto-optimality solutions (Deb, 2001;
Deb et al., 2002b). The optimization methods have been widely
applied in the water resources planning and management
(Nicklow et al., 2010; Shafiee and Zechman, 2011). The Non-
dominated Sorting GA (NSGA-II) has become one of the most
widely used multi-objective GA for the selection and placement
of BMPs at the watershed scale, considering the efficiency and cost
of BMPs as well as farm income (Hsieh et al., 2010; Maringanti
et al., 2011; Panagopoulos et al., 2013). However, NSGA-II faces dif-
ficulties when applied to problems without any information from
decision makers (Deb, 1999a). The difficulties include: (1) the
emphasis on all of the non-dominated solutions may produce
selection pressure for the decision makers, and (2) a set of Par-
eto-optimality solutions does not provide a good presentation of
the properties of the solutions near the desired region. Instead, it
is a time-consuming search process based on the entire Pareto-
front. Therefore, it is necessary to identify methods that can find
a preferred and smaller set of Pareto-optimality solutions
(Nedjah et al., 2012; Park and Ok, 2012).

Numerous past studies have attempted to provide decision
makers with a set of preferred solutions near the desired region
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of interest. In these studies, the cost-effectiveness-operability
objectives were weighed by the decision makers’ preferences and
aggregated into a single objective function. This simple approach
seems reasonable because the weights for the objectives were
directly derived from the levels of satisfaction of the local decision
makers. However, the weights were subjective to the different
purposes of the local governments. Alternatively, Deb (1999b)
modified NSGA by incorporating the goal programming idea while
Phelps and Köksalan (2003) used pairwise comparisons to incorpo-
rate the preferences into the fitness function. Woodruff et al.
(2013) proposed the many-objective visual analytics (MOVA)
framework to demonstrate how decision biases arise for lower
dimensional, highly aggregated problem formulations. Currently,
one of the main tools for expressing information that reflects the
preferences of decision makers is the use of reference points, which
consist of aspiration levels that reflect desirable values for the
objective functions and allow the decision makers to search for
the most preferred solutions (Deb and Sundar, 2006; Molina
et al., 2009).

Agriculture is the main economic activity in the Three Gorges
Reservoir Region (TGRR). The massive application of fertilizers
releases much nitrogen (N) and phosphorus (P), which results in
serious eutrophication. To cost-effectively control pollution, it is
extremely important to identify the locations for various BMPs to
minimize cost. The preferences of the decision maker have a large
influence on the selection of watershed management programs,
especially in developing countries like China. In this study, the
NSGA-II was modified to directly obtain a region around the refer-
ence points based on the methods previously proposed by Thiele
et al. (2009). In addition, the concept of Pareto preference ordering
is used to prioritize more desirable solutions for further analysis.
The Daning River watershed was used as a case study to verify
an interactive, multi-objective optimization method. The objec-
tives of this paper are to (1) encourage the participation of the
decision makers in the entire multi-objective optimization process
for searching for the most preferred areas, (2) avoid the extremely
optimistic or pessimistic expectations for the watershed aquatic
environment, and (3) identify the solutions with the best objective
function values.

2. The framework for a preference-based NSGA-II

The framework for the preference-based optimization is shown
in Fig. 1. Firstly, the initial Pareto-optimality front was generated
by incorporating the Soil and Water Assessment Tool (SWAT)
and the traditional NSGA-II (Part I) to provide the decision space
for decision makers. Secondly, a preference-based algorithm was
used to find a smaller and preferred set of solutions in the Par-
eto-front based on the information that reflects the preferences
of decision makers (Part II). Finally, the concept of Pareto prefer-
ence ordering was used to reduce the number of eligible solutions
(Part III).

2.1. The generation of the initial Pareto-front

In this study, the Pareto-optimality fronts were generated using
the NSGA-II method. The NSGA-II has gained popularity in many
fields because it has been developed to overcome issues of high
computational complexity and lack of elitism and a need for spec-
ifying the sharing parameter (Deb et al., 2002a). A major difference
between the NSGA-II and other GAs is the method of operator
selection. The NSGA-II uses the non-dominated sorting and ranking
selection with the crowded comparison operator. The innovative
aspects of this algorithm are as follow (Panda and Yegireddy,
2013; Zare et al., 2012):

1. Fast non-dominated sorting: The fast non-dominated sorting
approach has a better book-keeping strategy to speed up the
non-dominated sorting process and reduce the computation
complexity.

2. Crowding distance: The NSGA-II adopts a crowding distance to
measure the density of individuals in the same front. The
overall crowding distance is calculated as the sum of individ-
ual distance values based on their m objectives in the
n-dimensional space. Behind the non-domination rank, the
crowding distance of each individual is also calculated by
the average Euclidean distance between it and each individual
in a front. Then, the selection is performed using a crowded
comparison operator.

3. Elitist crowded comparison operator: This operator guides the
selection process at various stages toward a uniformly spread-
out Pareto-optimality front. The crowding distance is applied
to select one with a greater crowding distance from two
individuals in the same front. The elitist crowded comparison
operator combines offspring population members with parent
population in the selection process.

In this study, the operator for the selection process is based on
individual fitness and sorted quickly by a non-dominated sorting
method. The excellent individuals were selected from the chromo-
some, which were regarded as the parents to generate offspring. To
ensure that the good gene can be inherited by the next generation,
the better adapted individuals from each generation were given a
larger virtual fitness score. For the selection mechanism, this study
used a stochastic tournament selection method. The basic idea was
that n individuals were randomly selected from the chromosomes
of every generation, and the best individual among the n individu-
als was retained and directly inherited by the next generation,
which was consistent with the idea of the elite reservation strat-
egy. Mutation and crossover were used to create a new population
for the next generation. The model terminated when the maximum
generation was reached, which was the stopping condition that
provided a range of optimized solutions for the multi-objective
functions. More NSGA-II information can be obtained from Deb
et al. (2002a).

The optimization results of the NSGA-II were very sensitive to
the parameters, including the number of generations, the initial
population size and the mutation probability. In this study, a sen-
sitivity analysis was conducted on the NSGA-II parameters using
the Morse Classification Screening Method (One factor At a Time
or OAT), which only changed a certain parameter and observed
its influence on the results. The Pareto-front located as close to
the origin of coordinate system as possible is desired, and the cor-
responding parameter values were those that resulted in the least
sum of distances from each solution on the Pareto-front to the
origin. For the specific sensitivity analysis procedure, refer to
Maringanti et al. (2009) and Maringanti et al. (2011).

To avoid the subjectivity of the decision maker in the parameter
sensitivity analysis, this study introduced the convergence index
and the distribution index (representing diversity) for the Pareto-
optimality set, which were proposed by Deb et al. (2002a). The
convergence index c measures the convergence of Pareto-optimal-
ity solutions based on the minimum Euclidean distance from the
solutions x = (x1, x2, x3, . . ., xn) of each generation to the chosen
solutions on the Pareto-front y = (y1, y2, y3, . . ., yn). The calculation
follows:

di ¼ min
n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

m¼1
ðf mð~xiÞ � f mð~yiÞÞ

2

r
ð1Þ

where f mð~xÞ is the m-th objective function of solution~x,~xi and~yi are
the k-dimensional vectors of the i-th solution from x = (x1, x2, x3,
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