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s u m m a r y

A multi-objective optimisation for reservoir operation based on expected monetary value and expected
first passage-time criterion is proposed. The computations are facilitated by the algorithms of matrix ana-
lytic methods. The formal structure, classifying states as levels and phases within levels, and associated
algorithms of matrix analytic methods are introduced in the context of multi-reservoir systems. The algo-
rithms underpin the feasibility of the computations for large systems and enable the calculation of the
full distribution of first passage time. A new algorithm for computing results for a seasonal model, which
reduces computing time by an order of magnitude for monthly time steps is presented. The methods are
illustrated for a two reservoir system, with an option of pumping additional water from a transfer
scheme, in the East of England. The Pareto front of Pareto optimal policies is shown.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The optimal operation of reservoir systems, in terms of water
releases, has been the subject of research for over fifty years, and
given the stochastic input to reservoirs, the process is typically
modelled as a Markov decision process (MDP). Howard (1960, pg.
128–137) implemented a stochastic dynamic programming (SDP)
solution for MDPs. However, the need for algorithms to control
increasingly large multi-reservoir systems providing hydro-power
as well as water supply to different categories of users (e.g.
Tejadaguibert et al., 1993; Huang et al., 2002; Archibald et al.,
2006; Reddy and Nagesh Kumar, 2006) ensures that it remains
an active area of research.

Stochastic dynamic programming typically focuses on expected
monetary value (EMV) and does not include any measure of risk in
the objective function (Mahootchi et al., 2010). To determine the
optimal policy, the agency administering the resource (usually a
government body) will typically assign value to the use of the
water based upon various market factors and regulation, choosing
the optimal policy based on EMV. The determined optimal policies
for the management of water resources is sensitive to the relative
value attributed to the needs of a potable water supply, agriculture,
industry, the environment, as well as recreation and transport

(Webby et al., 2009). The value of a water resource can be highly
subjective. Water being used for industry is highly valuable, but
using the same price for agriculture would be too prohibitive due
to the large quantity needed to produce a relatively low value
product. Nevertheless agriculture on a national scale is far too
important to neglect. Young and McColl (2005) proposed that it
is better to have a proportional allocation of the water remaining
after essential human needs are met. That is, water resource man-
agement should be focused on maintaining a storage level to guard
against future shortfalls and/or having a freeboard sufficient to
protect against flooding, rather than just maximising EMV. In addi-
tion the policy maker may have other uses for water storage, such
as, they may wish to maintain storage for recreational use, envi-
ronmental flows, or to maintain a wetland environment. To meet
these objectives based on water storage levels, rather than eco-
nomic considerations, in this paper we propose an alternative cri-
terion to EMV, based on expected first-passage time to a set of
states.

The expected first-passage time is a property of the Markov
chain modelling used in MDPs and as such eliminates the need
for utility rewards typical of the EMV optimisation. We propose a
new algorithm to find maximal or minimal expected first-passage
time criterion (FPTC) that exploits the Markov chain basis of the
MDP. To the best of the authors’ knowledge a first-passage time
criterion has not previously been used in an MDP to determine
an optimal operating policy of reservoir storages, although it has
been proposed in a general reliability context by Jianyong and
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Huang (2001). First-passage times are used in the Gould matrix
method (Gould, 1961) to find the mean recurrence time of a reser-
voir going from full to empty (McMahon et al., 2007). Here we
present a general framework that can also perform these calcula-
tions. We also give a new application for the phase-type distribu-
tion, which was first discussed in a hydrological setting by Fisher
et al. (2010).

The optimal FPTC policy is contrasted with the optimal policy
found using EMV and a Metropolis–Hastings type algorithm is pro-
posed to explore for other policies that are Pareto optimal for both
of these criteria. This strategy provides the decision maker with a
range of policies from maximising EMV through to maintaining
the storage and shows the reduction in EMV as more emphasis is
placed on maintaining the storage. An application to a system of
two storage reservoirs in Suffolk and Essex counties of South East
England is described.

2. Mathematical methods

Discrete time Markov chains have been a popular choice for
modelling reservoir systems since Moran’s influential monograph
(Moran, 1955). A discrete time Markov chain is a random process
in which the probability of moving from one state to another in a
discrete time step is dependent only on the present state and not
on the history of the process before the present state.

2.1. Markov decision processes

For the purposes of this paper, a discrete-time Markov decision
process is defined by 4 element object ðX;D; P;RÞ and the unit of
time step, where;

� X a finite state space representing the physical state of the
system,

� D a discrete set of decisions that affect the system,
� P a probability transition matrix dependent on the

decisions,
� R a matrix of relative rewards (a real number) for arriving

in all states j 2 X from i 2 X under each decision d 2 D.

The choice of the decision d 2 D can have two effects, it can
change probabilities in P and it can also change the rewards in R.
The probabilities and rewards under decision, d will be denoted
PðdÞ and RðdÞ respectively.

The total reward is maximised at each time step for all states in
X, by choosing a decision d 2 D that will give the highest expected
monetary value (EMV) based on the highest EMV at the next time
step. This is expressed in the form of a Bellman equation. Denote
the EMV of being in state i 2 X at time t as v tðiÞ. The Bellman equa-
tion is used to determine the maximum EMV, v�t�1ðiÞ, at time t � 1
given the maximum value, v�t ðiÞ, at time t and is of the form,

v�t�1ðiÞ ¼max
dt�1

X
j

pijðdt�1Þ rijðdt�1Þ þ v�t ðjÞ
� �( )

; ð1Þ

where pijðdt�1Þ and rijðdt�1Þ are the probabilities and reward respec-
tively for the transition from state i 2 X at time t � 1 to state j 2 X at
time t under decision dt�1 2 D made at time t � 1.

Bellman’s equation can be used to provide a stochastic dynamic
programming (SDP) solution for the optimisation of a system of
reservoirs, using a maximum EMV criterion, by working backwards
in time from some final time T. Consider the decision problem from
state i at time T � 1. The problem specification includes rewards
for arriving in each state j in X under each possible decision dT�1

together with transition probabilities from state i to j under each

decision. The decisions that maximise the EMV can be determined,
and this maximum EMV is written as v�T�1ðiÞ where

v�T�1ðiÞ ¼max
dT�1

X
pijðdT�1ÞrijðdT�1Þ;

the pijðdT�1Þ being the transition probabilities of going from state i
to state j under the decision dT�1, and rijðdT�1Þ being the reward
for arriving in state j under decision dT�1.

Now consider the decision problem at time T � 2. The total
value of a move from a state i to state j is the sum of the reward
for arriving in state j under decision dT�2 and the maximised
EMV in state j at time T � 1. The decisions that maximise the total
EMV are determined and this maximum EMV is written as v�T�2ðiÞ.
By recursion the general statement, known as Bellman’s equation,
in Eq. (1) assigns no value to ending in state j other than the reward
for arriving in it. This is immaterial as Bellman’s equation is solved
recursively back from T until a fixed point where

dT�1 ¼ dt;

for all i in X, and this stable decision set is independent of any values
assigned for ending in particular states.

In most hydrological applications seasonality needs to be
accounted for and Butcher (1971) suggested a method for solving
MDPs which have a seasonal component to them. In the model
proposed, a decision process is expanded to
ðX; D; P0; . . . ; Ps�1; R0; . . . ; Rs�1Þ, where each Pk is the probabil-
ity transition function at time k � t ðmod sÞ for a transition over
the time interval ðt � 1; t� and Rk is the reward matrix at time
k � t ðmod sÞ, where s is the number of seasons in the cycle.

As the matrices are now time dependent, Eq. (1) becomes,

v�t�1ðiÞ ¼max
dt�1

X
j

pk;ijðdt�1Þ rk;ijðdt�1Þ þ v�t ðjÞ
� �( )

; where

k � t ðmod sÞ:

However the Markov chain is now periodic. As a result when solv-
ing backwards the process is stopped when

dðt�1Þ�sþm ¼ dt�sþm;

for all i 2 X and m ¼ 1; . . . ; s.
A policy is a vector denoted u, where the elements of u; ui 2 D,

are the decisions that would be made in states i. Let PðuÞ be the
probability transition matrix for a reservoir operating under a pol-
icy u, where the probability of transition from state i 2 S to state
j 2 S, in one time step, is the element in the ith row and jth column,
denoted pijðuiÞ. The MDP X; D; P0 ; . . . ; Ps�1; R0; . . . ; Rs�1ð Þ is
then solved iteratively until the same season’s optimal decision
for all states is made for two successive years. This optimal policy
will be denoted u�, where u�ði; kÞ 2 D will be the optimal decision
for state i 2 X in season k.

In the case of a dynamic programming model for a multi-reser-
voir system, with sufficient discretisation for realistic operation
and seasonal variation included, the number of states may be very
large indeed. One potential way of dealing with this is the adapta-
tion of established matrix analytic methods used primarily in tele-
communications and queueing models. These have been
introduced in hydrological settings by Fisher et al. (2010) for
ephemeral stream flow, and Piantadosi et al. (2010) for a sequence
of three dams. Here the matrix analytic structure is further
exploited to take account of seasonality and develop succinct
methods of calculating measures of optimality.

2.1.1. Matrix analytic methods
Matrix analytic methods in discrete time extend the scope of the

simple Markov chain by allowing other than geometric times
between events, while retaining analytical tractability. The princi-
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