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s u m m a r y

This paper describes the training, validation, testing and uncertainty analysis of general regression neural
network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main
objectives of this work were to determine the optimum data normalization and input selection tech-
niques, the determination of the relative importance of uncertainty in different input variables, as well
as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min–
max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance
inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As
inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17
different sites over a period of 9 years. The best results were obtained using min–max normalized data
and the input selection based on the correlation between DO and dependent variables, which provided
the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH,
HCO3

�, SO4
2�, NO3-N, Hardness, Na, Cl�, Conductivity and Alkalinity. The results show that the correlation

coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the
GRNN model (arranged in descending order) were T, pH, HCO3

�, SO4
2� and NO3-N. Of all inputs, variability

of temperature had the greatest influence on the variability of DO content in river body, with the DO
decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty
analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since
the distribution of model results are very similar to the corresponding distribution of real data.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Programs that monitor water quality help to understand
various processes that have an impact on the overall quality of
water and provide necessary information for the management of
water resources in general. The quality of a water body is usually
described by sets of physical, chemical and biological variables that
are mutually interrelated (Khalil et al., 2010). The river waters have
been contaminated as a result of the discharges from wastewater
containing degradable organics, nutrients, domestic effluent, and
agricultural waste (Dimitrovska et al., 2012). All of the aforemen-
tioned contaminants directly or indirectly negatively affect key
river quality parameters such as dissolved oxygen (DO) content,
temperature, pH, conductivity, transparency, viscosity and total
dissolved solids. Among them, the DO is the most severely affected,
since the diffusion of oxygen into the river body (re-aeration) is an

inherently slow process. This in turn puts additional strain on the
other very important contributor to DO, namely the generation of
oxygen from photosynthetic aquatic plants (Araoye, 2009). Fur-
thermore, the above-mentioned water contamination, among
other parameters (e.g. the amount of light, species and abundance
of plants), also influence the factors which control the rate of pho-
tosynthesis, which makes the quantification of DO content in rivers
one of the primary concerns for water resource managers (Wen
et al., 2013).

Water quality modeling as a basis for water pollution control
are commonly used to predict trends in water quality based on
current water conditions, including pollutant concentrations
(Najah et al., 2011). The major issue in the application of water
quality models, such as IWA River Quality Model No. 1 (Reichert
et al., 2001), QUAL2K (Chapra and Pellettier, 2003), WASP6 (Wool
et al., 2006), is the requirement for more information regarding
the river system than is often available (Mannina and Viviani,
2010). A constant need for less complex models for the DO
forecasting led to the application of artificial neural networks
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Journal of Hydrology 519 (2014) 1895–1907

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2014.10.009&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
mailto:dantanasijevic@tmf.bg.ac.rs
http://dx.doi.org/10.1016/j.jhydrol.2014.10.009
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


(ANN) in this field (Chang et al., 2013; Chen and Chang, 2009). The
advantage of ANNs over deterministic models is that they require
less data and they are well suited for forecasting (Kisi et al.,
2012). In addition, the ANN approach does not require a complex
and explicit description of the underlying process in a mathemat-
ical form (Nayak et al., 2005). The design of ANNs originated from a
desire to emulate human learning, which led to the application of
massive parallel, distributed processing and computing techniques
inspired by biological neuron processing. ANNs are proved to be
highly effective for modeling non-linear problems, with applica-
tion to diverse large-scale problems (Banerjee et al., 2011).

Successful application of ANN models for the forecasting of DO
is associated with several challenges, the key issues being proper
data normalization and the selection of the model inputs that have
the most significant impact on model performance. Employing a
large number of inputs to an ANN model usually increases the net-
work size, resulting in a decrease in processing speed, a reduction
in the efficiency of the network (Arhami et al., 2013), and also may
ultimately result in a model that is not suitable as a practical fore-
casting tool. One of the important subjects in ANN modeling stud-
ies is the analysis of uncertainty and the influence of input data
uncertainty on the model results. The term uncertainty refers to
lack of knowledge or information on the models, parameters, con-
stants, input data, and beliefs/concepts. Information on the total
model uncertainty, for models which support decision-making, is
essential and it is as important as the modeling results themselves
(Borrego et al., 2008). The Monte Carlo Simulation (MCS) technique
is a widely used method for the analysis of uncertainty in hydro-
logical modeling and it allows the quantification of the model out-
put uncertainty resulting from uncertain model parameters, input
data or model structure (Shrestha et al., 2009).

In recent years, considerable progress has been made in the
development of ANN models for the forecasting of DO. Some exam-
ples of the application of ANNs for the modeling of DO at a single
location, include models developed for the Melen River, Turkey
(Samandar, 2010), Bow River, Canada (He et al., 2011), Foundation
Creek in Colorado, USA (Ay and Kisi, 2012), the Danube River in
Bezdan, North Serbia (Antanasijević et al., 2013a) and the Upper
Klamath River in Oregon, USA (Heddam, 2014). In those papers,
the authors tested a variety of ANN architectures (feed-forward,
recurrent, radial basic and general regression neural network),
applied for various periods of time, as well as using different data
representations (for details please see Appendix Table A1). In
contrast, the application of ANNs for the modeling of DO across
multiple sites was limited only to the use of multilayer perceptron
(for examples and details see Appendix Table A2).

In this paper, we propose an integrated ANN model, based on
the general regression neural network (GRNN) architecture, for
the forecasting of DO across multiple sites; the model is in this
instance applied to all monitoring stations located on the Danube
River, covering its 588-km course through the territory of Serbia.
Different methods for data normalization and input selection were
in order to enhance the performance of the model and to reduce
the number of inputs needed for DO forecasting. The performance
of the created ANN models were analyzed using multiple statistical
metrics. Finally, the impact of input data uncertainty on the model
output and the analysis of uncertainty of the results were
performed using the Monte Carlo Simulation (MCS) technique.

2. Materials and methods

2.1. Study area and water quality data

The Danube is the longest river on the Balkan Peninsula and the
second longest river in Europe, after the Volga. It is an international

waterway that connects Germany, as well as other Central Euro-
pean and Balkan countries with the Black Sea. The Danube flows
for 2857 km and passes through or touches the borders of ten coun-
tries: Germany, Austria, Slovakia, Hungary, Croatia, Serbia, Bulgaria,
Romania, Ukraine, and Moldova (ICPDR, 2014). Around 10% of its
basin is located in Serbia and on its 588-km course the quality of
river water is monitored at 17 separate monitoring stations (Fig. 1).

The dataset used in this study has been generated through con-
tinuous monitoring of the water quality of the Danube River in the
territory of the Republic of Serbia. The water quality was moni-
tored regularly each month (monthly or semi-monthly) at 17 dif-
ferent sites over a period of 9 years (2002–2010) and the data
was obtained from the Serbian Agency for Environmental Protec-
tion (SEPA, 2013). The availability of data, number of data patterns
(input vectors) per year and number of data patterns per site for
the studied period are presented in Table 1. There were between
131 and 252 available patterns per year, while the number of avail-
able patterns per site was between 53 and 128.

All water samples collected during the study period were ana-
lyzed for a large number of different water quality parameters,
from which, 19 were selected as inputs for the model (Table 2).
In total, the dataset contained 1512 data patterns with 20 water
quality parameters, which provided more than 30,000 individual
data points. The basic statistics of the selected input/output
parameters are presented in Table 2.

2.2. ANN architecture

An artificial neural network, which employs the model struc-
ture of a biological neural network, is a very powerful computa-
tional technique for modeling complex non-linear relationships
particularly in situations where the explicit form of the relation-
ship between the variables involved is unknown (Singh et al.,
2009). The basic and the most commonly used ANN architecture
consists of an input layer, a series of hidden layers and an output
layer. Each of these layers consists of a number of interconnected
neurons (processing units). In this study, the ANN architecture
known as general regression neural network (GRNN) was used,
since it proves to be an effective alternative to the basic Feed-for-
ward ANNs (Heddam, 2014). The GRNN is based on the non-linear
regression theory and is a universal approximator for smooth func-
tion. It consists of four layers, which are presented in Fig. 2.

GRNN is a one-pass supervised learning network, which means
that weights (Wij and WS1) between neurons in different layers are
determined by the values of variables, there Wij are weights
defined by the ith input variable and the jth training pattern, while
WS1 is equal to the values of output variable. In this architecture,
the number of neurons in the input and output layer corresponds
to the number of input and output variables, while the number
of pattern neurons is equal to the number of data patterns. The
number of neurons in the summation layer can be expressed as
No + 1, where No is the number of output neurons. In this case,
the pattern neurons are connected to two neurons in the summa-
tion layer, since the model has only one output.

Being a supervised network, the GRNN basically measures the
distance (Dj) of the training patterns in N-dimensional space,
where N is the number of inputs, and estimates the output accord-
ingly (Hanna et al., 2007). The calculated Dj, e.g. Euclidean distance
(1), is then processed using an exponential activation function (2).

Dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðwij � xiÞ2
vuut ð1Þ

f ðDjÞ ¼ exp
�Dj

2r2

� �
ð2Þ
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