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s u m m a r y

In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and
improved through the following steps: (1) the equivalent relationship between the Nash–Sutcliffe Effi-
ciency coefficient (NSE) and the likelihood function with Gaussian independent and identically distrib-
uted residuals is proved; (2) a new estimation method of the Box–Cox transformation (BC) parameter
is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3)
three likelihood functions—NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized
Error Distribution with BC (BC-SGED)—are applied for SWAT-WB-VSA (Soil and Water Assessment Tool –
Water Balance – Variable Source Area) model calibration in the Baocun watershed, Eastern China. Perfor-
mances of calibrated models are compared using the observed river discharges and groundwater levels.
The result shows that the minimum variance constraint can effectively estimate the BC parameter. The
form of the likelihood function significantly impacts on the calibrated parameters and the simulated
results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well,
but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of
the large error is low, but the small error around zero approximates equiprobability. By contrast,
SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the
groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary,
because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hydrologists have developed many models based on different
theories and concepts, such as SWAT (Neitsch et al., 2005) based
on the principle of the hydrologic response unit (HRU), TOPMODEL
(Beven and Kirkby, 1979) based on the topographic wetness index
(TWI), TOPKAPI (Liu and Todini, 2002) based on the nonlinear
reservoir theories, and HBV model (Wrede et al., 2013; Li et al.,
2014) based on a modification of the bucket theory in that it
assumes a statistical distribution of storage capacities in a basin.
However, because of the hydrologic complexity and especially
the hydrologic heterogeneity, these models cannot describe the
natural hydrologic processes entirely correctly, and their parame-
ters can be interpreted only to the ‘‘effective parameters’’ which

represent the integrated behavior at the model element scale.
Because it is difficult to determine the ‘‘effective parameters’’
directly from field measurement, the model parameters should
be determined through calibration against the historical record
data (Laloy et al., 2010). Owing to the lack of sufficient observation
data and the inter-dependence of model parameters, equifinality of
parameter sets must be expected instead of a single ‘optimal’
parameter set in calibration against field data (Beven, 2001;
Beven and Freer, 2001).

Additionally, errors in input data, model structure and mea-
sured outcomes are all lumped into a single additive residual term,
and then passed to the model parameters when calibrating the
hydrological model (Yang et al., 2007a,b; McMillan and Clark,
2009; Schoups and Vrugt, 2010). The parameter equifinality and
errors, individually or combined, result in parameter uncertainty.
So, the calibration of model parameters is being developed to
include estimation of the probability distribution of parameters
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that represents the knowledge about parameter values (Yang et al.,
2007b), and the Bayesian approach (usually using Markov chain
Monte Carlo scheme (MCMC)) is popularly proposed (Jin et al.,
2010; Li and Xu, 2014). The Bayesian approach (or MCMC) tries
to separate the observations (e.g. river discharges) into two parts:
a deterministic component and a random component describing
residuals (Schoups and Vrugt, 2010). The deterministic component
is determined by the hydrologic model. The joint probability of the
random component, i.e. residuals/errors between observations and
simulations generated by hydrologic model with a particular
parameter set, is estimated by a likelihood function. By
augmenting the likelihood function with prior knowledge of model
parameters, the posterior distribution of model parameters is
estimated.

There are many successful applications for calibration and
uncertainty analysis of model parameters using the Bayesian
approach with the MCMC scheme. For example, McMillan and
Clark (2009) used a modified NSE (Nash–Sutcliffe Efficiency coeffi-
cient (Nash and Sutcliffe, 1970)) as an informal likelihood function
to calibrate model parameters. However, the modified NSE failed to
reveal the relationship between the NSE and the likelihood func-
tion with statistical assumptions. Stedinger et al. (2008) indicated
that the standard least squares (SLS), equivalent to maximizing
NSE, is a kind of formal likelihood function under the assumption
that the errors follow Gaussian distribution with zero mean and
a constant variance. This theoretical derivation, however, is non-
strict because of fixing the standard deviation of residuals/errors.

In recent years, some doubts have been expressed about the for-
mal Bayesian approach. The two main reasons are summarized as
follows (Beven et al., 2012; Clark et al., 2012): First, the formal
Bayesian inference mistakenly treated all residuals as random
errors; second, there is no generalized likelihood function that
could be appropriate for all model structures. Beven et al. (2012)
indicated that the model residuals include epistemic errors (such
as model structure and input errors) as well. The epistemic errors
result in the correlative and heteroscedastic characteristics of
model residuals. In order to account for the errors’ correlation
and heteroscedasticity, many researchers (Yang et al., 2007a,b;
Schoups and Vrugt, 2010; Smith et al., 2010; Li et al., 2011) add a
‘‘gray box’’ before calculation of the likelihood function in the
MCMC scheme.

The first-order autoregressive (AR(1)) scheme and the Box–Cox
transformation method (BC) are widely used to remove errors’ cor-
relation and heteroscedasticity, respectively (Vrugt et al., 2009a;
Schoups and Vrugt, 2010; Smith et al., 2010; Li et al., 2011). The
Box–Cox transformation method needs to estimate transformation
parameter (k). Most studies (Vrugt et al., 2009a; Engeland et al.,
2010; Li et al., 2011) fixed the value of k, and some others (Yang
et al., 2007a,b; Laloy et al., 2010) treat k as an inference parameter.
Obviously, it is more effective to remove the errors’ heteroscedas-
ticity when k varied as model predictions. Unfortunately, almost all
the inference results touch the boundary of k(0 6 k 6 1), such as
the result (k) of Yang et al. (2007b) approaches to zero, and k of
Laloy et al. (2010) approaches to one. The boundary value means
the extreme situation, e.g. when k = 1, the BC is ineffective, i.e. no
transformation of model residuals, and the BC becomes the log
transformation when k = 0, although it rarely occurs. Therefore, it
is necessary to build a new efficient method to estimate the trans-
formation parameter (k) in the MCMC scheme.

Another question is: which probability distribution is appropri-
ate for the random errors? Gaussian distribution is widely used as
the probability distribution of the errors/residuals. However,
recently some researchers have shown that there are many cases
of non-Gaussian errors (Thiemann et al., 2001; Yang et al.,
2007b; Schoups and Vrugt, 2010; Smith et al., 2010; Li et al.,
2013). Some researchers proposed the Generalized Error

Distribution (GED) (Thiemann et al., 2001; McMillan and Clark,
2009) and the Skew Generalized Error Distribution (SGED)
(Schoups and Vrugt, 2010) that was developed from the GED.

The objective of this study is to assess the effect of different
likelihood functions on the Bayesian inference in hydrological
modeling. The primary goal is achieved through the following
steps. Firstly, we establish a relationship between the Nash–
Sutcliffe Efficiency coefficient (NSE) and the likelihood function;
then we introduce a constraint to estimate the Box–Cox transfor-
mation (BC) parameter (k); finally we compare three likelihood
functions—NSE, Generalized Error Distribution with Box–Cox
transformation (BC-GED) and Skew Generalized Error Distribution
with Box–Cox transformation (BC-SGED) approaches—within the
DiffeRential Evolution Adaptive Metropolis (DREAM) Markov Chain
Monte Carlo (MCMC) scheme to discuss the effect of the form of
likelihood function.

2. Study area and hydrologic model

2.1. Study area

The Baocun watershed (86.7 km2) is a rural, mountainous
watershed located in the eastern Jiaodong Peninsula in China
(Fig. 1). The elevation of the watershed ranges from 20 m at the
watershed outlet to about 220 m above mean sea level at the
head-watershed. The length of the watershed is 16.1 km, the aver-
age width 5.4 km and the average slope 8.2‰. The climate of the
watershed belongs to the Western Pacific Ocean extratropical
monsoonal region with 70% of the rain falling between June and
September (Fig. 2). The average annual precipitation is 805.6 mm
with average annual potential evapotranspiration loss of
899.0 mm (measured by pan evaporation equipment termed
E601). The average monthly temperature ranges from �0.8 �C in
January to 24.4 �C in August. Fig. 2 shows that the warmest months
correspond with the moistest months, and vice versa.

The geology of the watershed is mainly volcanic and metamor-
phic rocks, and the dominant parent materials of the soil are gran-
ite, diorite and gneiss. The dominant soil types are Luvisols,
Regosols and Fluvisols covering about 94% of the area (FAO/
IIASA/ISRIC/ISSCAS/JRC, 2009). The main land use is agriculture
(terraced cropland), and the dominant crops are peanuts, corn
and winter wheat. The agricultural lands are farmed three times
every two years (termed crop rotation). The detailed schedules of
planting crops are peanuts in May, winter wheat in October and
corn in June next year.

2.2. SWAT-WB-VSA model

The Soil and Water Assessment Tool (SWAT) is popularly used
for water resource management all over the world (Gassman
et al., 2007). SWAT describes the spatial distribution of hydrologi-
cal processes by dividing a watershed into multiple sub-basins,
which are then further subdivided into hydrologic response units
(HRUs) consisting of homogeneous land use, soil characteristics
and slope. HRU is the smallest element of SWAT. The Soil Conser-
vation Service curve number procedure (CN) is widely used to
simulate the surface runoff generation in SWAT. However, the CN
is an empirical method, which has some limitations in reflecting
that soil moisture affects the surface runoff generation (Han
et al., 2012). White et al. (2011) proposed a new model (termed
SWAT-WB), which incorporated a physics-based rainfall-runoff
approach (i.e. the Water Balance (WB) method) into SWAT. In this
study, for reflecting the effect of topography on runoff, the Variable
Source (runoff) Area (VSA) is incorporated into the SWAT-WB
model. This new model is called SWAT-WB-VSA. In every HRU of
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