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s u m m a r y

Various data assimilation (DA) methods have been used and are being explored for use in operational
streamflow forecasting. For ensemble forecasting, ensemble Kalman filter (EnKF) is an appealing candi-
date for familiarity and relative simplicity. EnKF, however, is optimal in the second-order sense, only if
the observation equation is linear. As such, without an iterative approach, EnKF may not be appropriate
for assimilating streamflow data for updating soil moisture states due to the strong nonlinear relation-
ships between the two. Maximum likelihood ensemble filter (MLEF), on the other hand, is not subject
to the above limitation. Being an ensemble extension of variational assimilation (VAR), MLEF also offers
a strong connection with the traditional single-valued forecast process through the control, or the max-
imum likelihood, solution. In this work, we apply MLEF and EnKF as a fixed lag smoother to the Sacra-
mento (SAC) soil moisture accounting model and unit hydrograph (UH) for assimilation of streamflow,
mean areal precipitation (MAP) and potential evaporation (MAPE) data for updating soil moisture states.
For comparative evaluation, three experiments were carried out. Comparison between homoscedastic vs.
heteroscedastic modeling of selected statistical parameters for DA indicates that heteroscedastic model-
ing does not improve over homoscedastic modeling, and that homoscedastic error modeling with sensi-
tivity analysis may suffice for application of MLEF for soil moisture updating using streamflow data.
Comparative evaluation with respect to the model errors associated with soil moisture dynamics, the
ensemble size and the number of streamflow observations assimilated per cycle showed that, in general,
MLEF outperformed EnKF under varying conditions of observation and model errors, and ensemble size,
and that MLEF performed well with an ensemble size as small as 5 while EnKF required a much larger
ensemble size to perform closely to MLEF. Also, MLEF was not very sensitive to the uncertainty param-
eters and performed reasonably well over relatively wide ranges of parameter settings, an attribute desir-
able for operational applications where accurate estimation of such parameters is often difficult.
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1. Introduction

Uncertainties in the initial conditions (IC) of soil moisture and
observed boundary conditions (BC) of precipitation and potential
evaporation (PE) introduce considerable errors in hydrologic fore-
casts. In recent years, data assimilation (DA) has been gaining great
attention to reduce these uncertainties (Liu et al., 2013; Brocca
et al., 2010; De Lannoy et al., 2007; Ibbitt et al., 2007; Liu and
Gupta, 2007; Seo et al., 2003; Reichle et al., 2002). DA makes

inference on the model states by bringing together all available
observations from often disparate sources, quantifying the uncer-
tainties in the model and observation errors, and updating the
state variables by optimally combining model predictions with
observations. In addition to DA in the single-valued sense, ensem-
ble DA is also necessary to allow state updating in operational
ensemble forecasting systems (Seo et al., 2006; Demargne et al.,
2014; Cloke and Pappenberger, 2009; Schaake et al., 2007a,b;
Schellekens et al., 2011; Thielen et al., 2008; Werner et al., 2005,
2009).

In hydrologic forecasting, one would ideally like to assimilate
soil moisture observations to update the model ICs of soil moisture,
in which case the observation equation would be linear. In reality,
however, soil moisture states are seldom observed in-situ and,
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even if such measurements are available, they are generally not
representative of the conditions at the scale where the hydrologic
models operate. Streamflow observations, on the other hand, are
much more widely available and reflect the catchment-wide condi-
tions, albeit only in some spatiotemporally integrated sense. For
the use of streamflow data for updating of soil moisture states,
the observation equation involved is generally highly nonlinear,
which poses an additional challenge in DA.

Various DA techniques such as Kalman filtering (Kalman, 1960),
variational assimilation (VAR, Jazwinski, 1970; Li and Navon, 2001;
Seo et al., 2003, 2009), particle filtering (Weerts and Serafy, 2006),
etc., have their own merits and demerits (Liu and Gupta, 2007; Liu
et al., 2013). Extensions of Kalman filter have been developed to
deal with nonlinear systems. Extended Kalman filter (EKF), e.g.,
involves linearizing the model dynamics using the first-order
Taylor series approximation (Maybeck, 1979). To overcome the
limitations of EKF, a Monte Carlo-based Kalman filter, or EnKF,
was proposed by Evensen (1994). The novelty of EnKF is in its abil-
ity to deal with nonlinear model dynamics naturally without line-
arizing model equations (Moradkhani et al., 2005). Unlike VAR,
EnKF does not assume temporally constant model error covariance
or requires a separate adjoint model. For the above reasons and
algorithmic simplicity, EnKF has gained great popularity in various
applications recently (Evensen, 2003; Chen et al., 2011; Xie and
Zheng, 2010).

Variations of EnKF and different types of ensemble filter have
also been developed. Anderson (2001) proposed an ensemble-
based filter called ensemble adjustment Kalman filter (EAKF) in
which both the mean and covariance of updated ensembles are
preserved. He concluded that EAKF is superior to EnKF especially
for small ensemble sizes. Another variant of EnKF was introduced
by Whitaker and Hamill (2002) called ensemble square root filter
(ESRF) in which the perturbation of observation is avoided. Sakov
and Oke (2008) presented a linear approximation of ESRF with
comparable performance. Bocquet (2011) proposed a deterministic
variant of EnKF named finite-size ensemble transform Kalman fil-
ter (ETKF-N) which is less sensitive to sampling errors. Van
Leeuwen and Evensen (1996) introduced ensemble smoother
(ES), and Evensen and van Leeuwen (2000) developed ensemble
Kalman smoother (EnKS). Cohn et al., (1994) used a fixed-lag
smoother to incorporate all available observation at current time
as well as a fixed amount of time past each analysis time. In this
work, we use a fixed-lag smoother formulation of EnKF.

Unlike VAR, however, EnKF and its variants assume linear
observation equation. As such, if the observation equation is non-
linear as in assimilating streamflow data for updating soil moisture
states, EnKF may not be expected to perform well. To address the
above limitation in EnKF, Zupanski (2005) developed maximum
likelihood ensemble filer (MLEF) which combines the strength of
EnKF and VAR. MLEF may be considered as an ensemble extension
of VAR in which, once the VAR solution-like maximum likelihood
or control solution is obtained, ensemble members are generated
by perturbing the control states and propagating them forward
as in EnKF. The purpose of this work is to compare EnKF with MLEF
for assimilation of streamflow data in soil moisture updating.

In MLEF, the analysis solution is obtained as a model state that
maximizes the posterior conditional probability distribution. The
maximum likelihood solution, in the single-valued sense, is supe-
rior to ensemble mean if the normality assumption is not met. In
operational forecasting, provision of such a ‘‘most likely’’ solution,
in addition to the ensemble members, is very important to the
human forecasters as the former provides a reference solution for
the existing manual DA process, referred to as run-time modifica-
tions (MOD) in NWS (Seo et al., 2009). The maximum likelihood
state is estimated via iterative minimization, thus making the
MLEF approach closely related to iterated Kalman filter

(Jazwinski, 1970; Cohn, 1997; Zupanski, 2005). As with other
ensemble data assimilation algorithms, MLEF produces an estimate
of the uncertainty in the analysis solution (e.g., analysis error
covariance). Unlike VAR, however, MLEF does not require an
adjoint code and solves a reduced-rank problem in ensemble sub-
space with superior preconditioning (Zupanski, 2005).

MLEF has been used in various studies such as carbon transport
(Lokupitiya et al., 2008; Zupanski et al., 2007), aerosol retrieval
(Carrio et al., 2008), wind power forecasting (Zupanski et al.,
2010) and targeting additional observations for forecasting of trop-
ical cyclones (Kim et al., 2010). To the best of the authors’ knowl-
edge, however, MLEF has never been used in hydrologic
applications or objectively compared with EnKF for streamflow
assimilation until this paper. Additional significant new contribu-
tions of this paper include systematic sensitivity analysis of DA
performance with respect to the ensemble size, the number of
streamflow observations assimilated per cycle and the magnitude
of model and observational errors, and comparative evaluation of
performance of DA under homoscedastic and heteroscedastic mod-
eling of observation errors.

It is noted here that the evaluation carried out in this work is in
the single-valued sense only. That is, we only consider the DA tech-
niques as minimization tools for single-valued analysis. By ‘‘single-
valued’’, we mean analysis or prediction expressed by a single rep-
resentative value, such as the maximum likelihood solution in
MLEF or the ensemble mean in EnKF, rather than by multiple val-
ues such as an ensemble. The term single-valued forecast was
introduced recently in the hydrologic literature (Schaake et al.,
2007a,b; Wu et al., 2011; Regonda et al., 2013; Demargne et al.,
2014) to distinguish from deterministic forecast. The paper is orga-
nized as follow. Section 2 describes the formulation of the assimi-
lation problem. Section 3 describes the EnKF and MLEF
methodologies. Error modeling is described in Section 4. Section 5
describes the study basins, data used and experiment design. We
present the results in Section 6. Section 7 provides conclusion
and future research recommendations.

2. Formulation of the assimilation problem

Assume a headwater basin with a stream gauge at the outlet
with hourly observations of streamflow, mean areal precipitation
(MAP) and mean areal potential evaporation (MAPE) available in
real time. Assume also that lumped rainfall–runoff and routing
models operate for continuous simulation and prediction of
streamflow at the catchment outlet. The rainfall–runoff and rout-
ing models used in this work are the Sacramento soil moisture
accounting model (SAC) (Burnash et al., 1973) and unit hydrograph
(UH) (Chow et al., 1988), respectively. The SAC model has six state
variables which are updated by DA: the upper zone tension water
content (UZTWC), the upper zone free water content (UZFWC), the
lower zone tension water content (LZTWC), the lower zone supple-
mental free water content (LZFSC), the lower zone primary free
water content (LZFPC) and tension water content in the additional
impervious area (ADIMC) (Burnash et al., 1973).

Our problem is then to assimilate the observations of MAP,
MAPE and streamflow for real-time updating of the soil moisture
states of the rainfall–runoff model. To account for the time lag
between the generation of runoff and its arrival at the catchment
outlet, we formulate the DA problem as fixed-lag smoothing
(Schweppe, 1973; Li and Navon, 2001) following Seo et al. (2003,
2009) and Lee et al. (2011, 2012). The size of the fixed lag, or the
assimilation window, should be comparable to the response time
of the basin. The experience thus far indicates that the size of the
window should be about the length of the unit hydrograph, or
the basin response time of fast runoff (Seo et al., 2003, 2009; Lee
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