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s u m m a r y

For operational flood forecasting, discharge observations may be assimilated into a hydrologic model to
improve forecasts. However, the performance of conventional filtering schemes can be degraded by
ignoring the time lag between soil moisture and discharge responses. This has led to ongoing develop-
ment of more appropriate ways to implement sequential data assimilation. In this paper, an ensemble
Kalman smoother (EnKS) with fixed time window is implemented for the GR4H hydrologic model (modè-
le du Génie Rural à 4 paramètres Horaire) to update current and antecedent model states. Model and
observation error parameters are estimated through the maximum a posteriori method constrained by
prior information drawn from flow gauging data. When evaluated in a hypothetical forecasting mode
using observed rainfall, the EnKS is found to be more stable and produce more accurate discharge
forecasts than a standard ensemble Kalman filter (EnKF) by reducing the mean of the ensemble root mean
squared error (MRMSE) by 13–17%. The latter tends to over-correct current model states and leads to
spurious peaks and oscillations in discharge forecasts. When evaluated in a real-time forecasting mode
using rainfall forecasts from a numerical weather prediction model, the benefit of the EnKS is reduced
as uncertainty in rainfall forecasts becomes dominant, especially at large forecast lead time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Flood forecasting is important for timely flood warning and
emergency responses but is also subject to uncertainties in input
data, initial states, model structure and parameters (Sene, 2008).
Data assimilation provides an effective way to integrate observa-
tion information, such as gauged discharge data and remotely
sensed data, into hydrologic models to reduce these uncertainties
(Liu et al., 2012). Past research has demonstrated that assimilating
remotely sensed data, such as soil moisture (Crow and Ryu, 2009;
Flores et al., 2012), evapotranspiration (Zhang et al., 2009), snow
cover and snow water equivalent (Andreadis and Lettenmaier,
2006; He et al., 2012; Slater and Clark, 2006) can reduce the uncer-
tainty in model outputs. However, assimilating discharge observa-
tions is still a more popular choice for real-time flood forecasting
(Clark et al., 2008a; He et al., 2012; Komma et al., 2008; Lee
et al., 2011; Lee et al., 2012; Ricci et al., 2011; Seo et al., 2009;
Thirel et al., 2010), as discharge observations are more directly

related to streamflow forecasts and, in many basins, are readily
available for operational application.

Various data assimilation methods have been proposed for inte-
grating discharge data into hydrologic models, including both
sequential and variational techniques (Liu et al., 2012). Variational
data assimilation has been used for operational forecasting sys-
tems (Lee et al., 2012; Seo et al., 2009); however, as a deterministic
approach, it is less compatible with probabilistic real-time fore-
casting than sequential techniques. As a sequential and stochastic
approach, the ensemble Kalman filter (EnKF) can improve stream-
flow forecasts by integrating observations to sequentially update
model states, e.g., soil moisture (Komma et al., 2008; Li et al.,
2013; McMillan et al., 2013; Thirel et al., 2010), and snow water
equivalent (DeChant and Moradkhani, 2011b; He et al., 2012). In
addition, the EnKF is sometimes applied to simultaneously update
model states and parameters (Moradkhani et al., 2005b; Nie et al.,
2011; Wang et al., 2009a). Despite the existence of more complex
competing approaches, such as the particle filter (PF) (DeChant and
Moradkhani, 2011a; Salamon and Feyen, 2009) and particle Mar-
kov chain Monte Carlo (PMCMC) methods (Andrieu et al., 2010;
Moradkhani et al., 2012; Vrugt et al., 2013), the EnKF still remains
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a popular choice for operational streamflow forecasting due to its
computational efficiency and ability to directly generate ensemble
forecasts (Clark et al., 2008a; He et al., 2012; Komma et al., 2008;
McMillan et al., 2013).

One issue with the standard EnKF is that it is not designed to
account for the time lag between errors in soil moisture and in
discharge originating from water travel time between the hill-
slope and basin outlet. For hydrologic models whose routing
processes are fully simulated through conceptual storage states,
e.g., the probability distributed model (PDM) (Li et al., 2011; Li
et al., 2013) and the conceptual hydrologic model (HyMOD)
(Moradkhani et al., 2005a), the lagged errors accumulate in routing
storages and can be effectively corrected by real-time filtering
methods. In these cases, there is no need to account for time lags
in the data assimilation procedure (Li et al., 2013; Moradkhani
et al., 2005b). However, for other models whose routing processes
are fully or partially simulated by unit hydrographs, e.g., the
Hydrologiska Byrns Vattenbalansavdelning (HBV-96) model
(Pauwels and De Lannoy, 2009) and the modèle du Génie Rural à
4 paramètres Journalier (GR4J model) (Li et al., 2013), the errors
are lagged via unit hydrographs, which are difficult to directly
update via stream discharge assimilation. For models employing
unit hydrographs, the standard EnKF is not an ideal tool to correct
errors in the antecedent states (Li et al., 2013; McMillan et al.,
2013; Pauwels and De Lannoy, 2009).

To address this time lag issue, various new approaches have
been investigated, which include shifting observations backwards
by a fixed number of steps (Weerts and El Serafy, 2006), updating
antecedent model states with a fixed lag (Meier et al., 2011), map-
ping the observational information to states within a time window
through a retrospective EnKF (Pauwels and De Lannoy, 2006;
Pauwels and De Lannoy, 2009), a recursive EnKF (McMillan et al.,
2013), and an EnKS (Li et al., 2013). Even though the recursive EnKF
(McMillan et al., 2013) modifies model states within a past time
window, it updates antecedent and present model states itera-
tively. Due to its ‘iterative’ update-prediction process which uses
the same observation multiple times, there is a potential risk of
over-correcting the state error. The retrospective EnKF updates
past and present states within a time window simultaneously then,
however; it reruns the whole model from the beginning of the past
analysis time window to obtain the model prediction. This means
that corrected model states within the time window, except for
the initial states, are not used for prediction. Consequently, error
accumulates throughout the analysis time window and the bene-
fits of considering a time lag can become marginal (Pauwels and
De Lannoy, 2009). The EnKS with a fixed time window addresses
the time lag issue in a theoretically robust and efficient manner
and can produce more accurate forecasts than the standard EnKF;
however, to date, the EnKS has only been assessed in synthetic
studies (Li et al., 2013). As a result, its reliability in real data assim-
ilation scenarios is uncertain.

Sequential data assimilation updates model state estimates
using a weighted average of the background model prediction
and the observation. The weights used in the averaging are largely
determined by a comparison of model and observation uncertain-
ties. Therefore, besides the time lag issue, quantifying these uncer-
tainties remains a significant challenge in hydrologic data
assimilation (Liu et al., 2012). The uncertainty of discharge observa-
tions is normally represented by applying either additive (Pauwels
and De Lannoy, 2009) or multiplicative Gaussian noise (Clark et al.,
2008a; DeChant and Moradkhani, 2012; Komma et al., 2008) or a
combination of both (Noh et al., 2011). Model uncertainty is usually
conceptually separated into several different sources including
forcing error (e.g., precipitation, potential evapotranspiration, and
temperature), model state error, parameter error, and model
structure error. A large number of approaches have been applied

to represent modeling errors in uncertainty analyses and/or data
assimilation studies. For instance, precipitation error can be
assumed to be additive (Weerts and El Serafy, 2006) or multiplica-
tive random noises (DeChant and Moradkhani, 2012) or to follow a
more sophisticated error model based on the consideration of spa-
tial-temporal correlation (Clark et al., 2008a; McMillan et al., 2013).
Parameter error can be represented by direct perturbation
(DeChant and Moradkhani, 2012; Nie et al., 2011) or simulated
through Markov Chain Monte Carlo (MCMC) based approaches
(Moradkhani et al., 2012; Vrugt et al., 2013). Model structural error
can be characterized by multi-model predictions and addressed
through Bayesian model averaging (Duan et al., 2007; Leisenring
and Moradkhani, 2012). Finally, model state error can be character-
ized directly through absolute or relative noises (Li et al., 2013; Noh
et al., 2011; Ryu et al., 2009) or propagated from forcing and other
uncertainties (Komma et al., 2008; Weerts and El Serafy, 2006).

While various error models can be applied, determining param-
eter values for these models is generally challenging. For discharge
observations, it is possible to approximately quantify the uncer-
tainty from the observation itself, for example, by analyzing the
uncertainty of rating curves used to calculate discharge (Clark
et al., 2008a). But it is hard to directly quantify forcing and model
uncertainties. To address this challenge, two types of approaches
have been suggested. One type is to use adaptive filtering tech-
niques, which quantify observation and model errors during the
online cycling of data assimilation (Crow and Reichle, 2008;
Crow and van den Berg, 2010). However, these approaches rely
on a number of assumptions, including the serial independence
of observation errors. More sophisticated adaptive filtering
approach, which require a reduced set of assumptions, have been
developed (Crow and Yilmaz, 2014) but not widely applied or
tested. A second approach for estimating error parameter are like-
lihood-based/Bayesian uncertainty estimation techniques which
disaggregate the total differences between model predictions and
observations into various sources of uncertainties. Specific exam-
ples include the generalized likelihood uncertainty estimation
(GLUE) (Beven and Binley, 1992), the framework for understanding
structural errors (FUSE) (Clark et al., 2008b), the Bayesian total
error analysis (BATEA) (Kavetski et al., 2006; Renard et al., 2011),
and the differential evolution adaptive metropolis (DREAM) algo-
rithm (Vrugt et al., 2008). However, unlike the particle filtering
techniques, these uncertainty estimation approaches have not
been widely applied to quantify error parameters for data assimi-
lation. One exception is the integrated uncertainty and ensem-
ble-based data assimilation (ICEA) system (He et al., 2012),
which use an MCMC-based uncertainty analysis tool to generate
ensemble spread for the EnKF. In addition to the adaptive filtering
and likelihood-based/Bayesian uncertainty estimation techniques,
Leisenring and Moradkhani (2012) suggested a variable variance
multiplier approach, which was further improved by Moradkhani
et al. (2012). It rescales variance multipliers (error parameters)
according to the accuracy of the mean predictions relative to a cer-
tain confidence interval (CI) of ensemble predictions. Therefore, it
can complement the uncertainty estimation methods as an error
variance corrector.

The aim of this paper is to address the time lag issue and error
estimation issue through an integrated data assimilation scheme.
Specifically, the focus is twofold: (1) testing the EnKS in real data
assimilation scenarios and (2) examining the potential of likeli-
hood-based/Bayesian approaches to inform error parameters
required for hydrologic data assimilation. To achieve the objective,
an ensemble-based maximum a posteriori (MAP) estimation
method, which is a relatively simple likelihood-based approach,
is incorporated to quantify the model and observation error
parameters. The observational error information drawn from the
analysis of gauging data is used as an a priori constraint for the

Y. Li et al. / Journal of Hydrology 519 (2014) 2722–2736 2723



Download English Version:

https://daneshyari.com/en/article/6412125

Download Persian Version:

https://daneshyari.com/article/6412125

Daneshyari.com

https://daneshyari.com/en/article/6412125
https://daneshyari.com/article/6412125
https://daneshyari.com

