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s u m m a r y

This study investigated the performance and potential of a hybrid model that combined the discrete
wavelet transform and support vector regression (the DWT–SVR model) for daily and monthly stream-
flow forecasting. Three key factors of the wavelet decomposition phase (mother wavelet, decomposition
level, and edge effect) were proposed to consider for improving the accuracy of the DWT–SVR model. The
performance of DWT–SVR models with different combinations of these three factors was compared with
the regular SVR model. The effectiveness of these models was evaluated using the root-mean-squared
error (RMSE) and Nash–Sutcliffe model efficiency coefficient (NSE). Daily and monthly streamflow data
observed at two stations in Indiana, United States, were used to test the forecasting skill of these models.
The results demonstrated that the different hybrid models did not always outperform the SVR model for
1-day and 1-month lead time streamflow forecasting. This suggests that it is crucial to consider and
compare the three key factors when using the DWT–SVR model (or other machine learning methods cou-
pled with the wavelet transform), rather than choosing them based on personal preferences. We then
combined forecasts from multiple candidate DWT–SVR models using a model averaging technique based
upon Akaike’s information criterion (AIC). This ensemble prediction was superior to the single best
DWT–SVR model and regular SVR model for both 1-day and 1-month ahead predictions. With respect
to longer lead times (i.e., 2- and 3-day and 2-month), the ensemble predictions using the AIC averaging
technique were consistently better than the best DWT–SVR model and SVR model. Therefore, integrating
model averaging techniques with the hybrid DWT–SVR model would be a promising approach for daily
and monthly streamflow forecasting. Additionally, we strongly recommend considering these three key
factors when using wavelet-based SVR models (or other wavelet-based forecasting models).

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Streamflow is a fundamental and critical component of global
and regional hydrological cycles (Makkeasorn et al., 2008). It is also
strongly associated with human water supply, the agricultural and
industrial sectors, and natural disasters (e.g., droughts and floods).
Therefore, reliable short and long-term forecasts of streamflow are
crucial for appropriate and effective water resource planning and
management, especially in drought and flood-prone regions (Kisi
and Cimen, 2011). Over the last few decades, streamflow predic-
tion has become more important and has received significant
attention, because the fluctuations of global climate change are
causing frequent and extreme drought and flood events (Adamowski
and Sun, 2010). Hydrologic phenomena (e.g., streamflow) can be

forecasted using either physical, conceptual, or data-driven
approaches. The data-driven approach can be developed quickly,
is easy to implement in real-time, and requires minimum informa-
tion when compared with physically based hydrological models.
Therefore, it may be an ideal tool for watersheds where other cli-
matological and hydrogeological data are limited, and where it is
more important to provide precise forecasts than understand phys-
ical catchment processes (Adamowski, 2008; Adamowski and Sun,
2010). A variety of data-driven models have been developed and
used for streamflow forecasting in different interesting regions.
They include traditional statistical models such as multiple linear
regression (MLR) and autoregressive integrated moving average
(ARIMA) models (McKerchar and Delleur, 1974), and machine
learning techniques such as artificial neural networks (ANN) and
support vector machine (SVM) (Kim and Barros, 2001;
Sivapragasam et al., 2001; Kisi and Cimen, 2011).
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To date, SVM has attracted a great deal of interest as a soft com-
putational technique (Kisi and Cimen, 2011). The theory of SVM
was introduced by Vapnik and co-workers on the basis of a separa-
ble bipartition problem at AT&T Bell Laboratories in 1992. This pre-
diction tool uses machine learning theory to maximize predictive
accuracy while automatically avoiding over-fitting to the data
(Vapnik, 1995). The SVM is trained using the structural risk mini-
mization (SRM) principle, rather than the traditional empirical risk
minimization (ERM) principle (Yu et al., 2006; Wu et al., 2012). The
ERM principle can only minimize the training error, but SRM min-
imizes an upper bound of the generalization error. The SVM model
can thus achieve an optimum network structure and better gener-
alization using the SRM principle (Lin et al., 2006). SVM was orig-
inally used to solve the classification problem, before and then
another version of SVM for regression problem was proposed by
Vapnik et al. (1997). This new version is called support vector
regression (SVR), which has become the most common application
form of SVM. More recently, it has been further improved and suc-
cessfully applied in different problems of prediction such as signal
processing, stock price forecasting and traffic flow prediction (Cao
and Tay, 2001; Chang and Lin, 2001; Hong, 2011; Kao et al., 2013).
In addition to those applications, SVR has also gained popularity in
hydrological field. Liong and Sivapragasam (2002) used a SVR for
flood stage forecasting in Dhaka, Bangladesh. Bray and Han
(2004) identified an appropriate model structure and relevant
parameters when using SVR to accurately forecast streamflows.
Yu et al. (2006) used an SVR to establish a real-time flood stage
forecasting model in Lan-Yang River, Taiwan, and stated that the
proposed models can effectively predict flood stages 1–6 h ahead.
Wang et al. (2009) compared the performance of several methods
for forecasting monthly discharge time series, and revealed that
the SVR performed better than the ANN and ARIMA models.

Although the SVR model presents flexibility and usefulness in
forecasting hydrological time series, it has limitations regarding
highly non-stationary hydrological responses that vary over a
range of scales (e.g., from daily to multi-decadal) (Cannas et al.,
2006; Adamowski and Chan, 2011). Recent developments in wave-
let theory pave the path to reliably obviate SVR (or other data-
driven models) shortcomings in dealing with the non-stationary
behavior of hydrological signals. Wavelet transform has the ability
to provide a time–frequency representation of a signal at various
scales in the time domain. It can decompose a given hydrological
time series into various periodic components, providing consider-
able information about the physical structure of the data
(Daubechies, 1990). It is thus possible to generate better forecasts
by combining the strengths of wavelet transform and SVR (or other
data-driven models) (Kisi, 2008, 2009; Nourani et al., 2009, 2011;
Remesan et al., 2009; Adamowski and Sun, 2010; Pramanik et al.,
2010; Shiri and Kisi, 2010; Li, 2011; Tiwari and Chatterjee, 2011;
Kisi and Cimen, 2012; Rasouli et al., 2012; Adamowski, 2013;
Sang, 2013). For instance, Kisi and Cimen (2011) proposed a hybrid
wavelet and SVR model for hydrological forecasting and demon-
strated that the new approach provided a better prediction than
the regular SVR model. Kalteh (2013) predicted monthly stream-
flows using wavelet-based data-driven models (including SVR),
and concluded that the coupled model provided more accurate
forecasts than the non-coupled data-driven model.

However, some key factors of the hybrid wavelet–SVR model
still need to be explored in detail. These factors involve the choice
of an appropriate wavelet, the decomposition level, and the effect
of boundary problems in the wavelet decomposition phase of a
wavelet–SVR model. Although such issues are essential for wave-
let-based hydrological forecasting, they are often overlooked. In
most practical streamflow forecasting applications using wavelet-
based SVR models (or other wavelet-based forecasting models),
the selection of wavelets, decomposition levels, and edge effects

were based on personal preferences or subjective assumptions. In
fact, different settings of these key factors in the wavelet decompo-
sition phase of a wavelet-based SVR model may result in relatively
significant differences in the accuracy of a certain streamflow fore-
cast. It is therefore desirable to establish an overall assessment
regarding the choice of wavelets, decomposition levels, and edges
when using a wavelet-based SVR model (or other wavelet-based
forecasting models) for streamflow prediction. An insight into the
influence of these proposed key factors on model performance
would also be welcome. Furthermore, given a set of forecasts gen-
erated from different wavelet-based SVR models developed using
varying settings of these key factors, it is interesting to explore
the ensemble prediction given by combining individual forecasts
from candidate models, instead of using a single best model.

Therefore, this study aims to develop a framework that evalu-
ates the performance discrepancies resulting from different
mother wavelets, decomposition levels, and edge effects in a wave-
let-based SVR model, and provides an effective ensemble stream-
flow prediction based on a model averaging technique. We first
apply the wavelet-based SVR model in one-step ahead forecasting
for both daily and monthly streamflows, and compare the results
with those from the regular SVR model. We then explore the
potential of multi-model ensemble prediction using an averaging
technique based on Akaike’s information criterion (AIC). In addi-
tion, we implement multi-step ahead forecasting for both daily
(lead times of 2–3 days) and monthly (lead time of two months)
streamflows.

2. Theoretical background

2.1. Support vector regression (SVR)

Support vector regression (SVR) is derived from the support
vector machine (SVM) (Vapnik, 1995). SVR is used to solve regres-
sion problems with SVM. SVR uses a hypothesis space of linear
functions in a high-dimensional feature space, and is trained by
an algorithm from optimization theory that implements a learning
bias derived from statistical learning theory (Yu et al., 2006). In
SVR, the input vector is mapped to a high-dimensional feature
space using a nonlinear mapping function (Wu et al., 2012). The
learning goal of SVR is to find a regression function that estimates
the functional dependence between a set of sampled points
x = {x1,x2, . . .,xn} (the input vector) and desired values y = {y1,y2,
. . .,yn} (Kisi and Cimen, 2011) (here, the input and desired vectors
refer to the daily or monthly streamflow records and n is the total
number of data points). The regression function of SVR is formu-
lated as follows:

f ðxÞ ¼ ðw �UðxÞÞ þ b; ð1Þ

where w and b are the weight vector and bias terms which are the
coefficients in this regression function, and U(x) is a nonlinear map-
ping function. By mapping the input vector onto a high-dimensional
space, the nonlinear separable problem becomes linearly separable
in space (Maity et al., 2010).

The coefficients of a traditional regression model are
determined by minimizing the square error, which can be regarded
as an empirical risk based on the loss function (a measure of the
quality of estimation) (Kao et al., 2013). The SVR uses a new type
of loss function, called the e-insensitivity loss function (Le). It is
defined as

Leðf ðxÞ; yÞ ¼
jf ðxÞ � yj � e for jf ðxÞ � yj � e
0 otherwise

�
; ð2Þ

where y is the desired (target) output, and e is a user-determined
parameter which defines the region of e-insensitivity. There is zero
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