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s u m m a r y

Monthly streamflow forecasts with long lead time are being sought by water managers in Australia. In
this study, we take a first step towards a monthly streamflow modelling approach by harnessing a cou-
pled ocean–atmosphere general circulation model (CGCM) to produce monthly rainfall forecasts for three
catchments across Australia. Bayesian methodologies are employed to produce forecasts based on CGCM
raw rainfall forecasts and also CGCM sea surface temperature forecasts. The Schaake Shuffle is used to
connect forecast ensemble members of individual months to form ensemble monthly time series
forecasts. Monthly forecasts and three-monthly forecasts of rainfall are assessed for lead times of
0–6 months, based on leave-one-year-out cross-validation for 1980–2010. The approach is shown to pro-
duce well-calibrated ensemble forecasts that source skill from both the atmospheric and ocean modules
of the CGCM. Although skill is generally low, moderate skill scores are observed in some catchments for
lead times of up to 6 months. In months and catchments where there is limited skill, the forecasts revert
to climatology. Thus the forecasts developed can be considered suitable for continuously forecasting time
series of streamflow to long lead times, when coupled with a suitable monthly hydrological model.
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1. Introduction

Water management agencies require good quality forecasts of
streamflow to inform a wide range of water management activities
including dam operations, water trading, environmental releases
and planning for the future. For many applications, forecasts are
required at intra-seasonal and seasonal time scales with lead times
of up to one year. Intra- or inter-seasonal streamflow forecasts can
be produced using either statistical or dynamical modelling ap-
proaches. Statistical approaches forecast streamflow directly,
whereas dynamical approaches force a hydrological model with
forecast rainfall. Corresponding to the shift to dynamical models
within the climate forecasting community, many hydrological
forecasting agencies are now operating or experimenting with
dynamical models for streamflow forecasting. For example, Tuteja
et al. (2011) experimented with dynamical monthly and three-
monthly streamflow forecasting in Australia at zero lead time.

A key problem for dynamical streamflow forecasters, across all
time scales from hours to weeks to seasons, is sourcing quality and
timely rainfall forecasts. For the short time scales, hours to days,

hourly or three-hourly rainfall forecasts are available from numer-
ical weather prediction (NWP) models that closely simulate
weather patterns by numerically solving physical equations.
NWP forecasts are usually run on a high resolution grid (e.g.
12 km) and may resolve topography and other localised rainfall ef-
fects sufficiently well for the rainfall to be used directly, or after
moderate calibration, in hydrological models. For the longer time
scales, weeks to months to seasons, regular daily rainfall forecasts
are increasingly becoming available from coupled general circula-
tion models (CGCMs) (Graham et al., 2005; Saha et al., 2006; Wang
et al., 2011; Yasuda et al., 2007). CGCMs can be regarded as weath-
er forecasting models that are run on relatively coarse grids (e.g.
250 km). They are intended for forecasting seasonal climate shifts,
even though the models are run on a daily time step. Beyond about
10 days of simulations, the sequence of individual weather events
is not necessarily realistic, due to the chaotic nature of the ocean–
atmosphere system. Rather, useful information can be derived
about the climate of the system by analysing the forecasts at large
temporal (and spatial) scales. Because of the chaotic nature of the
modelled system, CGCMs for seasonal forecasts are nowadays
mostly run in ensemble mode, with perturbed initial conditions
leading to a range of possible outcomes that are represented by
ensemble members.
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The inherent simplifications, coarse grid structures, and ensem-
ble nature of CGCMs give rise to a number of problems that must
be addressed before CGCM rainfall can be used to force a hydrolog-
ical model. Firstly, CGCMs may have difficulty resolving local rain-
fall patterns, possibly leading to forecasts that correctly simulate
local rainfall variability but suffer from biases, or, in some cases,
forecast rainfall patterns that bear little resemblance to observed
rainfall patterns. Secondly, a CGCM’s ensemble generation tech-
nique may not produce ensembles that properly characterise fore-
cast uncertainty, manifested by ensembles that are, on aggregate,
found to be under- or over-dispersed (e.g. Lim et al., 2011). One
way to tackle these problems is to statistically post-process CGCM
output (Feddersen et al., 1999).

Taking on this approach, we consider that CGCM rainfall is usu-
ally made available on daily and monthly time scales. This raises
the question: is it better to post-process daily or monthly rainfall?
In Australia, an analogue downscaling method (Shao and Li, 2012;
Timbal and Jones, 2008) exists to produce catchment-scale post-
processed daily rainfall from a CGCM. However, there are a number
of reasons in favour of post-processing monthly rainfall directly.
Monthly aggregates should contain greater low frequency climate
signals, relative to high frequency weather noise, to be more read-
ily captured for seasonal forecasting. Monthly rainfall is also much
simpler to model as a stochastic process, and its processing can
therefore be focused on fewer statistics.

Monthly rainfall forecasts can be directly used as input to a
monthly catchment water balance model for forecasting monthly
streamflow. A recent study by Wang et al. (in preparation) found
that the monthly water partition and balance model (WAPABA)
performed comparably to two of the daily hydrological models
most widely used in Australia at simulating monthly streamflow
volumes. For intra- to inter-seasonal forecasting of streamflows,
it may therefore be sufficient to model at the monthly time step.
There are benefits of modelling at the monthly time step; for
example, there will be a significant reduction in computing time
required, freeing up resources for forecasting to longer lead times
with large ensembles and for forecasting at more locations.

In a recent study by Hawthorne et al. (2013), a Bayesian ap-
proach was used to post-process monthly CGCM rainfall totals
across Australia on the original CGCM grid. The focus of our study
here is to extend the approach of Hawthorne et al. (2013), to pro-
duce catchment-scale post-processed rainfall forecasts, out to long
lead times, which are suitable for input to a monthly hydrological
model like WAPABA. We define long lead times as beyond the first
three months. The Bayesian approach to post-processing is a con-
jugation of Bayesian joint probability (BJP) modelling (Wang and
Robertson, 2011; Wang et al., 2009) and Bayesian model averaging
(BMA) (Hoeting et al., 1999; Raftery et al., 2005; Wang et al.,
2012b). BJP models relate predictors, drawn from the raw hindcast
datasets of CGMs, to observed rainfall in a probabilistic framework.
When the predictor is raw CGCM rainfall, the model is referred to
as a calibration model. When the predictor is some other variable,
the model is referred to as a bridging model. For example, bridging
models may use CGCM forecasts of climate indices based on sea
surface temperature as predictors. For some regions, bridging mod-
els may have better predictive skill than direct calibration models.
Hawthorne et al. (2013) showed that the quality of post-processed
monthly CGCM rainfall could be improved by including both cali-
bration and bridging models in the post-processing.

The BJP-BMA approach post-processes forecasts for lead times
(and different regions) independently, and the observed temporal
(and spatial) correlation structures of the variables are not mod-
elled. If we are to generate, for example, nine months of rainfall
forecasts, we expect that corresponding ensemble members will
exhibit stable behaviour across lead times. A pragmatic procedure
to link the ensemble members is the Schaake Shuffle (Clark et al.,

2004). The Schaake Shuffle reorders the ensemble members
according to the distribution of historical observed data. After
applying the Schaake Shuffle, the temporal correlations in forecast
ensembles are implicitly introduced, and individual rainfall ensem-
ble members will be suitable for use in a monthly hydrological
model to forecast streamflow to long lead times. The Schaake Shuf-
fle also prepares the ensembles for aggregation to, for example,
three-monthly forecasts.

In this study, we produce and assess post-processed forecasts of
monthly rainfall, at lead times of 0–6 months, for three catchments
of different sizes and in different climatic zones in eastern
Australia. Raw simulations of monthly rainfall totals and other
variables are obtained from a CGCM known as POAMA (the
Predictive Ocean Atmosphere Model for Australia). The Australian
Bureau of Meteorology’s official seasonal climate outlooks are
now produced using a version of this dynamical climate model.
Forecast quality is assessed through leave-one-year-out cross-
validation for the period 1980–2010. The remainder of the paper
is organised as follows. Section 2 provides an overview of Bayesian
joint probability modelling, Bayesian model averaging, ensemble
sequencing (Schaake Shuffle) and verification methods. Section 3
describes the study catchments as well as the POAMA and
observed rainfall datasets. Section 4 presents the results with dis-
cussion and Section 5 wraps up the paper with a summary and the
main conclusions.

2. Methods

2.1. Overview

There are three main methods applied in sequence in our post-
processing approach: (i) Bayesian joint probability modelling
(Wang and Robertson, 2011; Wang et al., 2009) for producing cal-
ibration and bridging forecasts, (ii) Bayesian model averaging
(Hoeting et al., 1999; Raftery et al., 2005; Wang et al., 2012b) for
merging the calibration and bridging forecasts, and (iii) the
Schaake Shuffle (Clark et al., 2004) for sequencing ensemble mem-
bers of forecasts for individual months to form ensemble monthly
time series. Since we do not significantly modify the listed meth-
ods, only the salient features of each method will be described in
this section.

2.2. Bayesian joint probability models

The first step in our post-processing approach is to establish
multiple statistical models that relate predictor variables, derived
from CGCM output fields, to observed catchment rainfall. To do
this, we apply a Bayesian joint probability (BJP) modelling ap-
proach. We denote a predictor variable as x and a predictand var-
iable as y. The relationship between each x and y is modelled as a
transformed bivariate normal distribution. In the context of this
study y is always a rainfall variable (catchment average rainfall).
If x is also a rainfall variable (i.e. CGCM forecast rainfall), we refer
to the model as a calibration model. If x is some other variable (e.g.
an index of CGCM sea surface temperature anomalies), we refer to
the model as a bridging model. This distinction is merely for con-
venience, as will become apparent in subsequent sections.

Transformations of the variables may be necessary to satisfy the
modelling assumptions of normality and homoscedasticity. In the
construction of each model, transformations are applied to each
variable independently, and it is assumed that the model follows
a bivariate normal distribution in the transformed space.

pðx̂; ŷÞ � Nðl;RÞ ð1Þ

where
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