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Uncertainties are an unfortunate yet inevitable part of any forecasting system. Within the context of sea-
sonal hydrologic predictions, these uncertainties can be attributed to three causes: imperfect character-
ization of initial conditions, an incomplete knowledge of future climate and errors within computational
models. This study proposes a method to account for all threes sources of uncertainty, providing a frame-
work to reduce uncertainty and accurately convey persistent predictive uncertainty. In currently avail-
able forecast products, only a partial accounting of uncertainty is performed, with the focus primarily
on meteorological forcing. For example, the Ensemble Streamflow Prediction (ESP) technique uses mete-
orological climatology to estimate total uncertainty, thus ignoring initial condition and modeling uncer-
tainty. In order to manage all three sources of uncertainty, this study combines ESP with ensemble data
assimilation, to quantify initial condition uncertainty, and Sequential Bayesian Combination, to quantify
model errors. This gives a more complete description of seasonal hydrologic forecasting uncertainty.
Results from this experiment suggest that the proposed method increases the reliability of probabilistic
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forecasts, particularly with respect to the tails of the predictive distribution.
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1. Introduction

Uncertainty is pervasive throughout hydrologic forecasting. A
general lack of information, and skillful modeling frameworks,
leads to forecast products that do not have sufficient ability to be
relied upon in an entirely deterministic manner. In the specific
case of seasonal streamflow, volumetric estimates of runoff are
necessary for guidance of an array of water management decisions,
yet the accuracy of such estimates is often unsatisfactory
(Moradkhani and Meier, 2010). To this end, it should be of high
priority to ensure that estimates of forecast uncertainty are statis-
tically reliable. Given that probabilistic estimates of volumetric
streamflow are reliable, risk within a reservoir system can be more
effectively managed, thus reducing the chance of both flood
damages and water shortages concurrently.

Research into probabilistic methods for seasonal forecasts has
developed over the past few decades. A first example is the Ensem-
ble Streamflow Prediction (ESP) framework proposed by Twedt
et al. (1977) and clarified by Day (1985). ESP works under the
assumption that the primary skill in a hydrologic forecast is based
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on land surface conditions, and as such treats initial conditions as
deterministic quantities, while leveraging climatological stochastic
forcing to account for poor knowledge of future meteorological con-
ditions. The framework itself has prompted a number of studies to
improve seasonal forecasting, including utilizing information from
climate indices (Najafi et al., 2012) and climate modeling products
(Mo et al., 2013; Yuan and Wood, 2012). Since the literature sug-
gests that some information about seasonal climate is available
through both climate modeling and teleconnections, further studies
have examined the assumption that skill is primarily derived from
initial conditions (Li et al., 2009; Shukla et al., 2013; Wood and
Schaake, 2008; Yossef et al., 2013). With an increasing focus on
the relative skill of different aspects of seasonal forecasting,
an increasing focus has been placed on determining how best to
manage overall uncertainty in the modeling framework.

Interest in probabilistic forecasting is increasing within the
hydro-meteorological research and operational communities
(Brown et al., 2010; Demargne et al., 2013; Madadgar et al.,
2012; Yuan et al., 2013), yet forecast systems rarely approach
the uncertainty estimation problem holistically. Primarily, in the
seasonal streamflow forecasting realm, these uncertainties arise
from meteorological forcing of the model, initial land surface
conditions, and model uncertainty. The forecasting community
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has understandably focused predominantly on the uncertainties
relative to future weather conditions, as these uncertainties will
become dominant at most forecast lead times (Shukla et al.,
2013; Yossef et al., 2013). More specifically, the forecast steadily
loses sensitivity to the initial conditions over time, but the forecast
will remain sensitive to forcing at all lead times. Though such
methods lead to probabilistic flow estimates, these methods gener-
ally underestimate the forecasting uncertainty (Wood and Schaake,
2008; Yuan and Wood, 2012). The objective of this study is to
develop and test a technique to improve the quantification of
uncertainty in probabilistic forecasting of seasonal volumetric
streamflow, thus reducing the problem of overconfidence. In order
to overcome this overconfidence, this study proposes a movement
towards treating the initial land surface states and models as
probabilistic values, in addition to meteorological forcing.

Probabilistic estimation of land surface states has proven to be a
challenge throughout the land surface modeling community, but
great strides are being made in the field of ensemble data assimi-
lation (DA) (Moradkhani, 2008). A number of researchers have
been looking into the use of DA methods for improving land sur-
face state prediction (Andreadis and Lettenmaier, 2006; Clark
et al., 2008; De Lannoy et al., 2012; Margulis et al., 2002; Reichle
et al., 2002) and examining the ability of stochastic states to esti-
mate uncertainty reliably (DeChant and Moradkhani, 2011a;
Leisenring and Moradkhani, 2010; Liu and Gupta, 2007;
Moradkhani et al., 2005a,b). The extensive literature on ensemble
DA within hydrologic models motivated the use of ensemble DA
techniques for probabilistic initial state estimation (ESP-DA) as
presented in DeChant and Moradkhani (2011b). Results from this
study suggested that accounting for initial condition uncertainty
in ESP improves the reliability of seasonal streamflow forecasting,
but that results remain overconfident. An important issue that
potentially causes this persistent overconfidence is the assumption
that model uncertainty is insignificant. Thus model error must also
be examined in a seasonal forecasting framework.

An increasingly popular method to account for model uncer-
tainty is through multi-model ensembles (Bohn et al., 2010;
Regonda et al., 2006). By having a diverse set of models, a forecast
implicitly accounts for the errors related to each individual model.
Multi-modeling via Bayesian Model Averaging (BMA) is becoming
an increasingly popular technique throughout hydrologic forecast-
ing (Ajami et al., 2007; Duan et al., 2007; Raftery et al., 2005),
which has also been extended to estimate the posterior model
probability sequentially in time, which is referred to as Sequential
Bayesian Combination (SBC) (Hsu et al., 2009). Recently, both BMA
and SBC have been shown to be completely compatible with
ensemble DA (Parrish et al., 2012), leading the current study to
propose the use of model averaging within the previously devel-
oped ESP-DA framework to simultaneously account for initial con-
dition and model uncertainty. Through these advancements, it is
possible to move hydrologic forecasting towards a more complete
accounting of uncertainty (Liu et al., 2012). Thus the hypothesis of
this study is that ESP with DA and SBC will lead to more reliable
probabilistic forecasts of seasonal streamflow, in comparison to
traditional ESP, and the previously examined ESP-DA methodology.

2. Methods
2.1. Study area

The study examines streamflow forecasting throughout the
Upper Colorado River Basin (UCRB), defined here as the entire
Colorado River Basin upstream of Lee’s Ferry (see Fig. 1), which is
located just downstream of Lake Powell. The UCRB is located in
the southwestern US, covering portions of Wyoming, Utah,

Colorado, Arizona and New Mexico. The basin drains an area of
roughly 280,000 km?, with forest covering much of the upper ele-
vations and shrub land covering the valleys. The mean naturalized
yearly flow volume at Lee’s Ferry is roughly 18 billion cubic meters,
providing water to 26 million people with a minimum designated
annual flow from Lake Powell set at 9.3 billion cubic meters. In
Fig. 1, the gauges of the three major sub-basins (Green River,
Colorado Headwaters/Gunnison and San Juan) and at Lee’s Ferry
are identified. These four gauges are used to examine overall
forecast reliability, whereas spatial aspects of forecast accuracy
are analyzed over 16 smaller sub-basins.

3. Models and data
3.1. Hydrologic models

3.1.1. Variable infiltration capacity model

The VIC model is a physically-based, distributed model that
solves the energy and water balance at the land surface, and
spatially discretized units are generally placed on a regular grid
(Gao et al.,, 2010; Liang et al., 1994). In order to perform model
calculations, VIC requires soil information, vegetation information,
elevation bands, precipitation, maximum and minimum tempera-
ture, average wind speed, humidity, and incoming shortwave and
longwave radiation for each grid cell. Land surface parameters
for VIC simulations were gathered from the Natural Resources
Conservation Services STATSGO dataset (soil) and the University
of Maryland land cover dataset (vegetation). Elevation bands were
defined using the USGS National Elevation Dataset, with informa-
tion from the Precipitation Regression on Independent Slopes
Model (PRISM) yearly precipitation information to aid in the
distribution of elevation band precipitation. Readers are referred
to Section 2.5 for information about the forcing data. Simulations
were performed over the entire UCRB at a spatial resolution of
0.25°, which makes 473 model grid cells. Based on the hydrologic
fluxes estimated by VIC, excess water is routed to the outlet of
the basin with a combination of Nash-Cascade hydrologic routing
and Muskingum-Cunge hydraulic routing.

3.1.2. National Weather Service River Forecast Center Models

The SNOW-17 and Sacramento Soil Moisture Accounting
(SAC-SMA) models are used by the National Weather Service
(NWS) to provide operational streamflow forecasts for flood and
water supply monitoring. These models are coupled, with
SNOW-17 handling snow accumulation/ablation calculations and
SAC-SMA modeling the soil water storage component. Both
SNOW-17 and SAC-SMA have a more conceptual nature to model
equations than VIC, leading to an increased reliance on calibration,
as opposed to soil and vegetation data. Fortunately, the NWS
calibrated parameters for each basin within the UCRB have been
made available by the Colorado Basin River Forecast Center
(CBRFC). The NWS performs simulations from these models with
elevation bands for each sub-basin, leading to 409 discretized units.
To run SNOW-17 and SAC-SMA, precipitation, average temperature,
and potential evapotranspiration (PET) are required. Excess runoff
from these models is routed to the outlet with a unit hydrograph
for hydrologic routing and Lag/K for hydraulic routing.

3.2. Observations

3.2.1. Passive microwave radiance

Passive Microwave (PM) brightness temperature (T,) from the
Advanced Microwave Scanning Radiometer — Earth Observing Sys-
tem (AMSR-E) data was used in this study to perform land surface
DA. T, was chosen for this study as it provides useful information
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