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This work presents the analytical solution to the convolution integral by taking into account the most
widely used lumped parameter hydrogeological models (Piston, Exponential, combined Exponential-
Piston and Dispersion model) and the eight most typical input tracer functions (Constant; Sinusoidal with
linear trend; Sinusoidal with combined sinusoidal and linear trend; Instantaneous pulse injection; Step or
Heaviside; Instantaneous pulse with exponential ending; Long pulse with sharp ending; Long pulse with
exponential ending) naturally occurring or usually conducted in aquifer systems under natural gradient
conditions. For such cases, the output tracer function is expressed in terms of mathematical elementary
functions that only depend on the aquifer mean transit time and the parameters belonging to the

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater mean transit times have received increasing
attention due to their interest for the management of water
resources (Kinzelbach et al, 2003; McGuire and McDonnell,
2006), to manage groundwater vulnerability due to contamination
of near surface recharge waters (Glynn and Plummer, 2005; Bethke
and Johnson, 2008) or for applications in groundwater dating stud-
ies (McGuire et al., 2002; Stichler et al., 2008). It is defined as the
first moment of a transit-time distribution (TTD) that may have
complicated shapes (Etcheverry and Perrochet, 2000). Techniques
for estimating these distributions can be grouped into three cate-
gories: (1) The geochemical techniques which combines environ-
mental tracers with lumped parameter models (LPMs) (Corcho
Alvardo et al., 2007; Knowles et al., 2010; Land and Huff, 2009;
Genereux et al., 2009; Solomon et al., 2010; Stolp et al., 2010;
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Massoudieh et al., 2012). This is the most parsimonious approach
since LPMs represent the mass transfer through the aquifer using
parameterized analytical functions for describing the TTD. These
functions explicitly explain how an input signal (recharge or pollu-
tion pulse for instance) is transformed as it travels through the
aquifer system (Cornaton et al., 2011; Massoudieh and Ginn,
2011). (2) The numerical modelling approach, which allows under-
standing how TTDs behave in advective-dispesive dominated
groundwater systems, regardless of the complexity of the internal
spatial flow configuration (Kinzelbach, 1992; Varni and Carrera,
1998; Etcheverry and Perrochet, 2000; Sanchez-Vila et al., 2001;
Cornaton and Perrochet, 2006; Cardenas and Jiang, 2010; Engdahl
et al.,, 2012; Green et al., 2014). Issues with non-uniqueness may
arise when TTDs are used to explain environmental tracer data
for model validation (Varni and Carrera, 1998; Weissmann et al.,
2002; Leray et al., 2012) because these concentrations can be fit
by multiple transit time distributions. (3) The non-parametric free
approach. This technique allows the determination of the TTD
without imposing any predefined shape of the distribution func-
tion (Fienen et al., 2006; Liao and Cirpka, 2011; Liao et al., 2013;
Massoudieh et al., 2013). It is a promising technique because it
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bypasses issues associated with model choice and parameteriza-
tion. Nevertheless, it often relies on the use of large data sets to
estimate TTDs.

Usually mean transit time is the main result of the above
groundwater dating techniques, although it provides little infor-
mation on skewed multimodal distributions. To infer transit time
distributions in hydrogeological systems where data are limited
(e.g., less developed countries, ungauged basins, karst and complex
fractured systems where an internal detailed knowledge is not
available) the geochemical technique has been widely used, mainly
because LPMs do not require detailed hydrological characterization
of the physical system. The lumped-parameter models treat the
hydrogeological system as a whole, and assume the flow pattern
to be in steady state or natural gradient conditions (Matoszewski
and Zuber, 1996). They transform tracer inputs to output concen-
trations by solving a convolution integral which depends on both
the input tracer function and the weighting function that lumps
all the factors affecting groundwater flow and/or tracer transport
(Matoszewski and Zuber, 1982; Zuber, 1986; Amin and Campana,
1996; among others).

The solution of convolution integrals is not an easy task despite
it being a well-known technique since the 19th century. Often,
hydrologists have to resort to numerical methods for accounting
complex time varying input tracer functions when evaluating con-
volution integrals. There is a number of software codes specifically
developed to numerically solve the convolution integrals
(Zoellmann and Aeschbach-Hertig, 2001; Matoszewski and Zuber,
2002; Bayari, 2002; Ozyurt and Bayari, 2003, among others), but
their use is not easy and requires some expertise from the user.
Additionally, these codes typically use a user defined constant time
length scheme (i.e. monthly or annual) to solve the convolution
integral. The input tracer function is therefore accommodated to
follow the defined time step discretization, which is done by aver-
aging the available input tracer concentration measurements over
the corresponding time step regardless of the input tracer mea-
surement sampling frequency (i.e. daily, monthly or annual mea-
surements). Such averaging process might generate errors when
estimating the model lumped parameters, especially in the case
of scarce input tracer data measurements. Nevertheless, in some
cases the input tracer functions can be mathematically described
by using elementary functions. The latter makes the convolution
integral to be analytically solved for some lumped-parameter mod-
els. Analytical solutions of the convolution integral can be found
for some simple input tracer functions: Matoszewski and Zuber
(2002) solved the convolution integral for a constant tracer injec-
tion function and by considering the Piston flow Model (PFM),
the Exponential Model (EM), the combined Exponential-Piston
model (EPM) and in some cases the Dispersion model (DM), which
are the most widely used lumped-parameter models used for
quantitative interpretation of tracer data in hydrologic systems
(McGuire and McDonnell, 2006). Amin and Campana (1996)
extended the previous work to include the case of the Partial Mix-
ing lumped-parameter Model (PMM). In this model the weighting
function is expressed in terms of a three-parameter gamma func-
tion, ranging the model applicability from near EM to near PFM,
but never reaching these extremes. Matoszewski et al. (1983) con-
sidered a simple sine-wave which is another time invariant injec-
tion tracer function. In this case they modelled the output tracer
concentration by acknowledging the fact that the convolution inte-
gral of a sine input function mathematically produces a sine output
function, which is delayed and buffered with different strength in
terms of the assumed lumped model. They provided the mathe-
matical expressions to relate the expected output changes in
amplitude and time-shift for both, EM and DM. Kubota (2000) for-
mally derived the latter expressions by explicitly integrating the
convolution integral with a sinusoidal input tracer function for

the same lumped models. Custodio and Custodio-Ayala (2013)
focused in the problem of considering a piecewise input tracer
function. They solved the convolution integral for the EM case by
considering an instantaneous tracer pulse followed by an exponen-
tial decreasing tracer tail injection.

The preceding injection functions are only a subset of the input
tracer functions found in the available literature related to tracer
data interpretation in hydrologic systems. In fact, input tracer
functions in natural gradient systems show other typical configu-
rations (i.e. Novakowski et al., 1995; Gerasopoulos et al., 2003;
Gooddy et al., 2006; Vincenzi et al., 2011; Farlin et al., 2013; among
others) which can be easily expressed in terms of elementary
mathematical functions. Although evaluating convolution integrals
is not easy and often error prone, especially when discontinuous
functions are involved, these analytical input functions might be
used to obtain the analytical solution of the convolution integral
for the classical lumped parameter models (i.e. PFM, EM, EPM
and DM) which have not been obtained yet.

This study aims to obtain the exact solution of the convolution
integral by accounting eight synthetic input tracer functions (Con-
stant; Sinusoidal with linear trend; Sinusoidal with combined sinu-
soidal and linear trend; Instantaneous pulse injection; Step or
Heaviside; Instantaneous pulse with exponential ending; Long
pulse with sharp ending; Long pulse with exponential ending)
and the four classical lumped parameter models PFM, EM, EPM
and DM.

2. Background

Lumped parameter models are useful to estimate the mean res-
idence time of groundwater in complex and poorly characterized
groundwater flow systems. They are convenient because no spa-
tially distributed detailed information is needed from the aquifer
system (i.e. transmissivity, porosity, boundary conditions, etc.)
which is typically required for numerical models based on Darcy’s
Law.

The lumped-parameter approach appeared initially in the field
of chemical engineering (Levenspiel, 1962, 1999), but their use
has been extended to other disciplines including hydrogeology
(see Matoszewski and Zuber, 1982, 1996; Zuber, 1986; Amin and
Campana, 1996, among others). In the Ilumped-parameter
approach the groundwater system is treated as a whole and the
flow pattern is assumed to be in steady state. In the general case,
the lumped parameter models transform the tracer input concen-
trations G, to output concentrations ((t) according to Eqgs. (1) or
(2), which are equivalent, and known as convolution integrals
(see Matoszewski and Zuber, 1982; Kwakernaak and Sivan, 1991;
Soliman and Srinath, 1998 or Olsthoorn, 2008, among others),

C(t) = /f Cin(t)g(t — tr)e_;.a-r')dt/ 0

C(t) = /0 " Calt— t)g(t)e Mt 2)

where / is the radioactive (or chemical) tracer decay constant (i.e. if
no chemical tracer degradation nor radioactive tracer is used then
/.=0), t is the time of entry, t' is the integration variable and g(t')
is the system response function, also called the weighting or the
transit time distribution (TTD) function. This function describes
the exit-age mean residence time of tracer concentrations, which
entered into the aquifer system at various times in the past. It is
ascertained by the response of the system to a pulse injection of tra-
cer. It may have various complicated shapes and it is not easy to cal-
culate. In fact, the inference of TTDs is an active research issue
(Fienen et al., 2006; Cirpka et al., 2007; Liao and Cirpka, 2011;
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