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s u m m a r y

Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are pres-
ent, their releases can greatly influence downstream water temperatures. Models are important tools in
understanding the influence these releases may have on the thermal regimes of downstream rivers. In this
study, we developed and tested a suite of models to predict river temperature at a location downstream of
two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-
class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model
with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural
Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain
and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind
speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream
U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from
2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was
evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and
index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime
index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted
daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97,
d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA,
showed short periods of under- or over-predicting observed warmer temperatures. For the training
dataset, all models besides ARIMA had overestimation bias (PBIAS = �0.10 to �1.30). Validation analyses
showed all models performed well; the HFM model was the most accurate compared other models
(RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06,
NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = �4.1 to�10.20). Aside from
the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five
day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean
temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and
HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated
river systems such as the Delaware River. Further model development may be important in customizing
predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

Published by Elsevier B.V.

1. Introduction

Water temperature is an important factor driving many pro-
cesses in riverine ecosystems (Jackson et al., 2001; Matthews,
1998). Many key abiotic processes, including nutrient cycles and
characteristics of dissolved gases, are linked to river temperature

(Webb et al., 2008). Similarly, many biotic activities, including life
history traits of aquatic species, are affected by changing patterns
of temperature over a variety of temporal scales (Vannote and
Sweeney, 1980; Ward, 1985). This pattern of changing tempera-
tures, or the natural thermal regime, is one key aspect of a func-
tioning river ecosystem.

In unregulated rivers, temporal patterns in thermal regimes are
primarily controlled by a set of factors that include climate (e.g. air
temperature, precipitation, and solar radiation), groundwater
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inputs, and topography (Caissie, 2006). Crisp and Howson (1982)
found air temperature explained almost 82% of variation in river
temperature for streams in England. Norton and Bradford (2009)
found stream temperature during summer months to be most sen-
sitive to air temperature but also noted relative humidity to be
important to stream temperatures in southern Ontario. Story
et al. (2003) found that groundwater could affect a river’s daily
maximum temperature by up to 3 �C and Constantz (1998) found
that groundwater inputs dampened the temperature fluctuation
in receiving streams largely because of the constant temperature
of groundwater. Fine-scaled resolution groundwater data have
been studied at various scales but the intended spatial application
of those study’s results are important to consider (Scanlon et al.,
2002).

The presence of reservoirs and reservoir releases can also alter a
river’s natural thermal regime; the magnitude and rate of change in
temperature depending upon reservoir size, release volume, and
the size of the downstream river (Baxter, 1977; Cole, 2007;
Harmel and Smith, 2007). Releases from impoundments have a
large influence on the thermal regime of downstream reaches, often
altering the relative importance of other factors, such as groundwa-
ter inputs or warming or cooling due to atmospheric conditions
(Baxter, 1977). This influence depends on season and on whether
the release is from the bottom or top of the reservoir because
reservoirs often show thermal stratification (Poff, 2002). For exam-
ple, a bottom release during summer would dampen the magnitude
of atmospheric warming (Bartholow, 1991). However, a surface
release during summer could be used to mitigate groundwater
influences to support warm water fisheries (Osmundson, 2011).
Therefore, management of these impoundments can directly affect
river temperatures through the quantity of release and whether the
release comes from the bottom or top of the reservoir. Because res-
ervoir releases affect multiple factors simultaneously (Graf, 2006),
it can be difficult to predict their effects on downstream thermal
regimes. Mathematical models may help understand how these
various factors interact to influence river temperature.

Many models have been developed to predict thermal regimes
in river systems using assorted climate variables and watershed
characteristics as predictor variables. These can be generally
grouped into two classes: empirical models (Johnson, 1971; Koch
and Grünewald, 2010; Mackey, 1991; Smith, 1981) and mechanistic
models (Allen et al., 2007; Bartholow, 1991). Empirical models are
correlative or response models with known properties and error
structures and are based on statistical analysis techniques
(Bolker, 2008). Empirical models are based entirely on data. Multi-
ple linear regression (MLR) is the most common and familiar exam-
ple of an empirical model and has been used to model river
temperature (Erickson, 2000; Mohseni and Stefan, 1999; Stefan
and Preud’homme, 1993), but can violate independence assump-
tions because of the nature of time series data. Additional examples
of empirical models that can handle time series data and have been
used in river temperature modeling include Generalized Least
Squares Models (GLS, Wehrly et al., 2009), Autoregressive Inte-
grated Moving Average models (ARIMA, McMichael and Hunter,
1972), and Artificial Neural Networks (ANN, Chenard, 2008) that
are built with an iterative process of data transformations fitting
observed patterns of influential factors to temperature values, and
nonlinear regression models (Mohseni et al., 1998). Recent
advances in empirical modeling include combinations of these
models (e.g., a hybrid ARIMA-ANN model, Ömer Faruk, 2010).

Mechanistic (theoretical) models are cause and effect models
that use functions and distributions based on a theoretical under-
standing of how a given system works. They have been applied to
estimate temperature in a variety of river systems and at a variety
of spatial scales (Bartholow, 2005; Benyahya et al., 2007; Bolker,
2008; Caissie et al., 2007; Keller, 1989; Norton and Bradford,

2009). To develop mechanistic river temperature models, past
studies have explored the use of a thermal budget balance that
accounts for all thermal inputs and outputs for a given river system
(Benyahya et al., 2007; Caissie et al., 2007). These may include
solar radiation, long-wave radiation, evaporative heat flux, and
convective heat flux (Caissie et al., 2007). These calculations result
in a value for the net heat gain or loss from the system and an
estimate of water temperature. Both empirical and mechanistic
models have been applied in free flowing river systems to predict
water temperature across a broad range of river conditions
(Bartholow, 1991; McKenna et al., 2010; Younus et al., 2000); how-
ever, their utility in regulated systems has yet to be fully tested.

The Upper Delaware River (UPDE), USA, is an ecologically
important river that has competing water demands, including
water supply for nearly 17 million people (New York City area),
recreational boating activities, and a world-class coldwater fishery.
Several species of concern, including American eel, (Anguilla
rostrata), American shad (Alosa sapidissima), and the US federally
endangered dwarf wedgemussel (Alasmidonta heterodon) and
bridle shiner (Notropis bifrenatus) are also located in the UPDE.
Streamflow and thermal regimes in the UPDE are strongly influ-
enced by releases from reservoirs on its major tributaries. Release
scenarios are designed to balance the above needs. Understanding
how these scenarios affect the thermal regime of the UPDE will
help water and fisheries managers. In this study, our goal was to
test how various temperature models performed in a regulated
river system and explain the potential strengths and limitations
of each model. To accomplish this, we developed and tested the
ability of three empirical models (two statistical and one Artificial
Neural Networks) and one mechanistic model (Heat Flux Model
based on theoretical heat gain or loss) to predict average daily river
temperature at a specific location in UPDE where river tempera-
tures are strongly influenced by upstream reservoirs.

2. Methods

2.1. Study area

The Delaware River basin, located in the Northeast United
States, drains 33,016 km2 along 674 km of river (Fig. 1). The head-
waters of the mainstem river begin in New York, USA, and the river
flows south with portions in the states of Pennsylvania, New Jer-
sey, and Delaware, USA. The river discharges into Delaware Bay
near Philadelphia, Pennsylvania, and ultimately drains into the
Atlantic Ocean. In this study, we focused on the portion of the river
upstream of the U.S. Geological Survey (USGS) gage at Lordville,
New York, USA (gage #1427207, drainage area 4118 km2, river
kilometer 483, Fig. 1) hereafter referred to as the Upper Delaware
River (UPDE). This area is of particular interest because (1) this sec-
tion of the Delaware River is managed as a coldwater fishery, (2)
the flow and temperature of this portion of the river is affected
by operation of three reservoirs (Cannonsville, Pepacton, and Nev-
ersink) that reside in the headwaters, and (3) previous studies
(Bovee et al., 2007; Cole, 2007; Maloney et al., 2012, 2014) have
documented the importance of reservoir management to species
in this area. Temperatures at the Lordville USGS gage also provide
the best indication of the upstream thermal regime; thus, develop-
ing a temperature model for this site would provide an important
tool for natural resource managers in the UPDE.

2.2. Data collection and dataset development

We incorporated climate and hydrologic data into a suite of
models to predict river temperature at the USGS Lordville gage
(LD) in the Upper Delaware River. Climate data were obtained from
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