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s u m m a r y

This paper compares the stability, accuracy, and computational cost of several numerical methods for
solving the kinematic wave equation. The numerical methods include the second-order MacCormack
finite difference scheme, the MacCormack scheme with a dissipative interface, the second-order MUSCL
finite volume scheme, and the fifth-order WENO finite volume scheme. These numerical schemes are
tested against several synthetic cases and an overland flow experiment, which include shock wave, rar-
efaction wave, wave steepening, uniform/non-uniform rainfall generated overland flows, and flow over a
channel of varying bed slope. The results show that the MacCormack scheme is not a Total Variation
Diminishing (TVD) scheme because oscillatory solutions occurred at the presence of shock wave, rarefac-
tion wave, and overland flow over rapidly varying bed slopes. The MacCormack scheme with a dissipative
interface is free of oscillation but with considerable diffusions. The Godunov-type schemes are accurate
and stable when dealing with discontinuous waves. Furthermore the Godunov-type schemes, like MUSCL
and WENO scheme, are needed for simulating surface flow from spatially non-uniformly distributed rain-
falls over irregular terrains using moderate computing resources on current personal computers.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The kinematic wave equation was first developed by Lighthill
and Whitham (1955). The equation is based on the assumptions
that the acceleration term and the pressure gradient term in the
momentum equation are negligible, so that the energy slope is
equal to the bottom slope. The kinematic wave model is commonly
used to simulate the overland flow (Ponce, 1991; Singh, 2001).
Henderson (1966) showed that natural flood waves behave nearly
the same as the kinematic wave in steep slopes (S0 > 0:002). Vieira
(1983) concluded that the kinematic wave equation can be used on
natural slopes with the kinematic wave number, k� 50. Ponce
(1991) compared the kinematic wave equation with the unit hyd-
rograph as a practical method of overland flow routing. Singh
(2001) concluded that the kinematic wave equation is applicable
to surface water routing, vadose zone hydrology, riverine and cos-
tal processes, erosion and sediment transport, etc.

The kinematic wave equation is a first-order hyperbolic partial
differential equation (PDE). For a hyperbolic equation, the

disturbance will travel along the characteristics of the equation
in a finite propagation speed. This feature distinguishes the
hyperbolic equations from elliptic and parabolic equations. On
the other hand, the kinematic wave equation also belongs to a kind
of equations called conservation laws (LeVeque, 2002; Toro, 2009).
Since the flux term is a nonlinear function of conservative
variables, the solution does not propagate uniformly but deforms
as it evolves. Even the initial conditions are continuous and smooth,
the hyperbolic conservation laws can develop discontinuities in
the solution, for example, shock waves.

Both shock and rarefaction waves are the intrinsic features of
hyperbolic equations. Lighthill and Whitham (1955) discussed
the formations of shock wave and rarefaction wave. Kibler and
Woolhiser (1970) investigated the structure and general properties
of shock waves and developed a numerical procedure for shock fit-
ting. Eagleson (1970) found that using non-uniform flow depth as
initial condition, non-uniform rainfall in the source term, or
increasing inflows as the boundary condition may cause the forma-
tion of kinematic shock wave. Borah et al. (1980) presented the
propagating shock-fitting scheme (PSF) to simulate overland flow
with shock waves. Singh (2001) found three factors that affect
the shock wave formation: (1) initial and boundary conditions;
(2) lateral inflow and outflow, and (3) watershed geometric charac-
teristics. Due to the complex geometry, non-uniform roughness
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and non-uniform rainfall pattern, it is impossible to derive a gen-
eral analytical solution for the kinematic wave equation. Singh
(2001) summarized three numerical techniques for solving the
kinematic wave equation: (1) method of characteristic, (2) Lax–
Wendroff finite difference method, and (3) finite element method.
Numerical diffusion and numerical dispersion were observed when
using the finite difference schemes (Ponce, 1991). Kazezyılmaz-
Alhan et al. (2005) evaluated several finite difference schemes for
solving kinematic wave equation: the linear explicit scheme, the
four-point Pressimann implicit scheme, and the MacCormack
scheme. The study (Kazezyılmaz-Alhan et al., 2005) found the Mac-
Cormack scheme is better than the four-point implicit finite differ-
ence scheme for shock capture. However, Kazezyılmaz-Alhan et al.
(2005) did not explicitly examine the dispersion occurred at the
shock and rarefaction waves from non-uniformly distributed rain-
fall. The stability of the classical MacCormack scheme at the pres-
ence of shock and rarefaction wave remains unknown.

Recently, the Godunov-type finite volume method has been
widely used in solving shallow water equations (LeVeque, 2002;
Toro, 2009) because of its wide applicability, strong stability, and
high accuracy. One of the most popular Godunov-type methods is
a second-order, TVD (Total Variation Diminishing) scheme, namely
the MUSCL (Monotone Upstream-centered Schemes for Conserva-
tion Laws) scheme (van Leer, 1979). The MUSCL scheme is a high-
resolution scheme because (1) the spatial accuracy of the scheme
is equal to or higher than second order; (2) the scheme is free from
numerical oscillations or wiggles; (3) high-resolution is produced
around discontinuities. In general, the high-resolution schemes
are considered as tradeoffs between computational cost and
desired accuracy (Harten, 1983; Toro, 2009). Another popular but
relatively new method is the high-order WENO (Weighted Essen-
tially Non-Oscillatory) finite volume scheme (Shu, 1999). High-
order means the order of accuracy is equal to or higher than the
third-order. According to Shu (2009), the WENO scheme is suitable
for the complicated problems, such as flow having both shocks and
complicated smooth structures (e.g., small perturbation). Although
the computational cost of high-order WENO scheme can be three to
ten times than a second-order high-resolution scheme, it is still
preferable because of its high-order accuracy in both time and
space. The applications of those two high resolution schemes to

solve the kinematic wave equation have not been studied. Whether
or not these finite volume schemes have advantages over the com-
monly used finite difference schemes are examined in this paper.

This study compares the Godunov-type finite volume method
using MUSCL scheme and WENO scheme with the finite difference
method using MacCormack scheme. The paper is organized as fol-
lows: Section 2 introduces the kinematic wave equation and its
analytical solutions; Section 3 discusses the numerical schemes:
the MacCormack scheme, the MUSCL scheme and the WENO
scheme; Section 4 shows the results of typical test cases. Finally,
several concluding remarks are given in Section 5.

2. Governing equations

The one-dimensional kinematic wave equation for flows over a
slope is given by (Eagleson, 1970; Lighthill and Whitham, 1955):

@h
@t
þ @q
@x
¼ i0 ð1Þ

where h is the depth of flow; q is the discharge per unit width;
i0 = i � f is the rain excess; i is the intensity of rainfall; f is the infil-
tration rate; t is the time; x is the downslope distance.

For the overland flow, the discharge q is defined as:

q ¼ ahm ð2Þ

where m is the exponential, and a is the coefficient. For fully turbu-
lent flow, the coefficients are given by Ponce (1989):

a ¼ 1
n

ffiffiffiffiffi
S0

p
; m ¼ 5

3
ð3Þ

where n is the Manning’s roughness coefficient; S0 is the bottom
slope. It is obvious that the flux function q(h) is a convex function
(Jacovkis and Tabak, 1996; Toro, 2009) because the second order
derivative is positive:

d2q

dh2 ¼ amðm� 1Þhm�2
> 0; for h > 0 ð4Þ

The analytical solution for Eq. (1) has been found by (Eagleson,
1970) in which the outflow hydrograph is a function of rainfall
intensity and the time of concentration.

Nomenclature

c wave celerity (m/s)
f infiltration rate (mm/h)
h flow depth (m)
hi flow depth at the center of cell i (m)
hi+1/2 reconstructed depth at the interface i + 1/2 of cell (m)
hL, hR flow depth at the left and right of wave front (m)
i0 rainfall excess (mm/h)
i intensity of rainfall (mm/h)
L(h) operator L(h) defined in Eq. (12) (–)
L channel length (m)
m exponential in Eq. (19) (–)
n Manning’s roughness coefficient (sm�1/3)
q discharge per unit width (m2/s)
qL outflow discharge (m2/s)
ri+1/2 distance from the cell center to the interface i + 1/2 (m)
S shock wave speed (m/s)
S0 bed slope (–)
TV(h) total variation of flow depth (–)
t simulation time (s)
tr duration of rainfall (s)
tc time of concentration (s)

tp time defined in Eq. (31) (s)
v flow velocity (m/s)
x downslope distance (m)

Subscript
i spatial index

Superscript

n, nþ 1, and n + 1 and n + 1, ⁄ temporal indices

Greek
a coefficient in Eq. (19) (–)
cj linear weights (–)
h coefficient for the dissipative interface (–)
e = 10�6 truncation error for actual calculations (–)
Dt time step (s)
Dx space step (m).
rhi limited depth gradient of cell i (–)
rhL,rhR limited depth gradient at the left and right of cell inter-

face (–)
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