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s u m m a r y

Due to the irregular distributions of aquifer hydraulic properties, the detail on the characterization of
flow field cannot be anticipated. There can be a great degree of uncertainty in the prediction of heat trans-
port processes anticipated in applying the traditional deterministic transport equation to field situations.
This article is therefore devoted to quantification of uncertainty involving predictions over larger scales in
terms of the temperature variance. A stochastic frame of reference is adopted to account for the spatial
variability in hydraulic conductivity and specific discharge. Within this framework, the use of the first-
order perturbation approximation and spectral representation leads to stochastic differential equations
governing the mean behavior and perturbation of the temperature field in heterogeneous aquifers. It
turns out that the mean equation developed in this sense is equivalent to the traditional deterministic
transport equation and the temperature variance gives a measure of the prediction uncertainty from
the traditional transport equation. The closed-form expression for the temperature variance developed
here indicates that the controlling parameters such as the correlation scale of specific discharge, which
measures the spatial persistence of the flow field, and the periodicity of the source term tend to increase
the variability in temperature field in heterogeneous aquifers. The uncertainty of the traditional heat
transport model increases as the penetration depth of thermal front through the aquifer increases. This
suggests that prediction of temperature distribution using the traditional heat transport model in heter-
ogeneous aquifers is expected to be subject to large uncertainty at a large depth (in the downstream
region). For the management purpose, the variance of temperature could serve as a calibration target
when applying the traditional model to field situations. It may be more reasonable to make conclusions
from, say, the mean temperature with one or two standard deviations rather than only the mean temper-
ature drawn from the traditional heat transport equation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the transport of heat in aquifers is partly
driven by the flowing groundwater. Especially vertical water fluxes
are prone to propagate temperature differences. The fluctuations in
aquifer properties are often viewed as random processes as a result
of the details of which cannot be described precisely. The spatial
variations in hydraulic conductivity cause a non-uniform velocity
field. Many practical problems of heat transport involve predic-
tions over much larger scales than these at which direct measure-
ments are possible. It can thus be expected that there can be large
uncertainty in predictions of heat transport in the field based on

the traditional deterministic heat transport equation for a homog-
enous porous medium. Therefore, it is useful to provide a quantita-
tive measure of uncertainty, such as the variance of the predicted
temperature, as a calibration target when applying the determinis-
tic model to field situations. This could be performed using a sto-
chastic approach.

Stochastic modeling of subsurface flow and transport recognizes
hydrological properties of the porous medium to be affected by
uncertainty and regards these as random. This randomness leads
to predictions of the flow or transport process in terms of a relatively
small number of statistical properties, such as the first and second
moments of hydraulic head or concentration (namely, the mean
and variance, respectively). With the introduction of statistical
inference, a field-scale equation containing effective coefficients
such as effective hydraulic conductivities or macrodispersivities is
developed to model the ensemble mean behavior of the dependent
variable. In the case of natural formations, the mean stochastic
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solution is useful to make decisions (e.g., Andricevic and Cvetkovic,
1996; Maxwell et al., 1999) in real life transport events, but there
will be variations around the mean. Therefore, for a successful pre-
diction a quantification of the degree of variability around the pre-
dicted mean behavior (the variance) should be established.

Determination of ground water flux using the analytical solu-
tion to the one-dimensional heat transport model has been dem-
onstrated and applied to situations of stream–aquifer
interactions (e.g., Stallman, 1965; Silliman et al., 1995; Hopmans
et al., 2002; Hatch et al., 2006; Keery et al., 2007; Rau et al.,
2010; Jensen and Engesgaard, 2011) and groundwater recharge
(e.g., Suzuki, 1960; Taniguchi, 1993; Taniguchi and Sharma,
1993; Tabbagh et al., 1999; Bendjoudi et al., 2005; Cheviron
et al., 2005). Interpretation of field observations using one-dimen-
sional analytical results appropriate for a homogenous system may
lead to significant errors in the predicted vertical flux in situations
where the flow field is non-uniform (e.g., Shanafield et al., 2010;
Schornberg et al., 2010; Jensen and Engesgaard, 2011; Ferguson
and Bense, 2011; Rau et al., 2012b; Roshan et al., 2012; Cuthbert
and Mackay, 2013). In other words, the prediction can be subject
to high levels of uncertainty.

As will be seen in the next section given below, the mean heat
transport equation is identical to the traditional equation except
that the mean specific discharge is replaced by the local specific
discharge. The traditional analytical result describing the tempera-
ture distribution may be interpreted as the mean of temperature
distribution, while the temperature variance may then be viewed
as the uncertainty anticipated in applying the deterministic analyt-
ical result. For the prediction of an actual temperature distribution
in the field, it may be more reasonable to draw conclusions from
the mean value (the analytical result) and the variance rather than
only the mean temperature. This research is primarily concerned
with the development of a quantification of deviation around the
mean temperature field in a non-uniform flow field and the analy-
sis of the influence of controlling parameters on that. The analysis

we perform is relevant mainly to shallow subsurface situations
that receive and transfer cyclic temperature fluctuations (i.e., daily
or seasonal) over depth. The temperature fluctuations are damped
with depth depending on their periodicity, so the solution gener-
ally applies to the surficial zone (Anderson, 2005). We hope that
the findings provided here will be useful for interpretation of field
data.

2. Mathematical statement of the problem

The heat transport equation for three-dimensional saturated
flow in a porous medium at the local level can be written as
(e.g., de Marsily, 1986; Demenico and Schwartz, 1998)
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where T is the temperature, Ke is the effective thermal conductivity,
C and q are specific heat capacity and density of the fluid–rock
matrix, respectively, Cw and qw are specific heat capacity and den-
sity of the fluid, respectively, and qi is the ith component of the spe-
cific discharge vector q = (q1, q2, q3). The effective thermal
conductivity takes into account the effects of thermal dispersion
and conduction through the rock–fluid matrix. It is worth mention-
ing that the effect of thermal dispersion is very small and negligible
(Bear, 1972; Hopmans et al., 2002; Rau et al., 2012a). The parame-
ters in Eq. (1), such as Ke, Cw, C, qw and q, are considered fixed
parameters for their variations in space and time may be assumed
to be negligible (e.g., Demenico and Schwartz, 1998; Anderson,
2005).

To account for the natural heterogeneity of geological forma-
tions, the log hydraulic conductivity lnK is regarded as the spatially
correlated random function. Spatially correlated random heteroge-
neity in lnK field results in spatial perturbations in specific dis-
charge in Eq. (1) and in turn in the modeled temperature field.

Nomenclature

A amplitude of temperature variations
C specific heat capacity of the fluid–rock matrix
Cw specific heat capacity of the fluid
G Eq. (11)
K hydraulic conductivity
Ke effective thermal conductivity
L length of the domain
P period of temperature variations
R wave number
Sqq specific discharge spectrum
T temperature
T mean temperature
T0 fluctuation in temperature
T0* complex conjugate of T0

U =cq
Z vertical space coordinate
dZqZ

complex random amplitude of specific discharge pro-
cess

qi ith component of the specific discharge vector
�qi ith component of the mean specific discharge vector
q0i fluctuation in ith component of the specific discharge

vector
q ¼ �qZ

t time
C1 Eq. (22)
C2 Eq. (23)

HTq transfer function
k1 Eq. (14)
k2 Eq. (15)
N =(r2T/A2)0.5

U1 Eq. (24)
U2 Eq. (25)
U3 Eq. (26)
W ¼ T=A
ae =Ke/(qC)
b =pae/(UL)
c =qwCw/(qC)
e Eq. (16)
g =PU/L
k correlation scale of lnK
l1 =4p2t2 + 1
l2 =p2t2 + 1
f =Z/L
q density of the fluid–rock matrix
qw density of the fluid
r2

f variance of lnK
r2

q variance of the specific discharge
r2

T variance of temperature
s =p2aet/L2

m =k/L
- =exp(�1/t)
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