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s u m m a r y

Practice experience reveals that prediction interval is more reliable and informative compared to single
simulation, as it indicates the precision of the forecast. However, traditional ways to implement the con-
struction of prediction interval is very difficult. This paper proposed a novel method for constructing pre-
diction interval based on a hydrological model ensemble. The excellent multi-objective shuffled complex
differential evolution algorithm was introduced to calibrate the parameters of hydrological models so as
to construct an ensemble of hydrological models, which ensures a maximum of the observed data to fall
within the estimated prediction interval, and whose width is also minimized simultaneously. Meanwhile,
the mean of the hydrological model ensemble can be used as single simulation. The proposed method
was applied to a real world case study in order to identify the effectiveness of the construction of predic-
tion interval for the Leaf River Watershed. The results showed that the proposed method is able to con-
struct prediction interval appropriately and efficiently. Meanwhile, the ensemble mean can be used as
single simulation because it maintains comparative forecasting accuracy as the traditional single hydro-
logical model.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and reliable flow forecasting is of great significance for
the optimal management and utilization of water resources. Con-
ceptual hydrological models, which are theoretical representations
of a part of the hydrologic cycle, are widely used to perform flow
predictions. In actual case applications, single simulation is more
popular than prediction interval because of its convenience to
implement. However, single simulation is of limited value because
it merely indicates a single possible future value for the variable
and does not convey information about the level of uncertainty
which is intrinsic associated with forecasting (Goodwin et al.,
2010). Compared to single simulation, prediction interval not only
provides a range that observed flows are highly likely to lie within,
but also has an indication of their accuracy called the confidence
level (Quan et al., 2014). Prediction interval is more reliable and
informative for decision makers to draw up plans than single sim-
ulation. Therefore a reasonable estimate of prediction interval for

the flows provides valuable information in water resources prob-
lems (Liu and Gupta, 2007).

Traditional methods for the construction of prediction interval
in the hydrology literature mainly are delta, Bayesian, generalized
likelihood uncertainty estimation (GLUE) and bootstrap. The delta
technique introduced by Chryssoloiuris et al. (1996) considers lin-
earizing the model around a set of parameters, and constructing
the prediction interval by the application of standard asymptotic
theory to the linearized model (Kasiviswanathan and Sudheer,
2013b). However this method is based on the assumption that
noise is homogenous and normally distributed which may not be
true in real world problems (Ding and He, 2003). In the Bayesian
method, each parameter in the model is considered as a probability
distribution rather than a single value and therefore the outcome
of the model will also be in distribution conditional form on the
observed data. Although the Bayesian method has a strong sup-
porting theory, it is still not popular because of the limitation of
massive computational burden. In Bayesian technique, the Hessian
matrix of the parameters needs to be calculated in each iteration.
The GLUE method is based on Monte Carlo simulation where a
model is run a large number of times with different parameter sets
(Blasone et al., 2008a,b). A large number of model runs are made
with many different randomly sampled parameter values from a
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priori probability distribution based on modeler’s knowledge of the
system. The acceptability of each run is evaluated against observed
values and, if the acceptability is below a certain subjective thresh-
old, the run is considered to be non-behavioral and that parameter
combination is removed from further analysis (Liu et al., 2010).
Although GLUE may be easily implemented and does not require
any changes to the source code of the simulation model, it also
has very evident shortcomings, such as subjective choice of the
likelihood function and truncation threshold used to separate
behavioral and non-behavioral models. The bootstrap method is
a computational procedure that uses intensive resampling with
replacement, in order to reduce uncertainty (Efron and
Tibshirani, 1993). The bootstrap method generates different real-
izations of a dataset to create bootstrap samples and their esti-
mates can provide average and variability of the estimates
(Tiwari and Chatterjee, 2010). The main advantage of the bootstrap
method is its simplicity and ease of implementation
(Kasiviswanathan et al., 2013a). However, bootstrap makes an
assumption that an ensemble of models will produce a less biased
estimate of the true regression of the targets. Implementation dif-
ficulties, special assumption about the data distribution, and mas-
sive computational requirements hinder the widespread
applications of these methods (Quan et al., 2014).

Recently, a variety of multi-objective optimization algorithms
have been introduced or designed for multi-objective parameter
optimization of hydrological models (Gupta et al., 1998, 1999;
Vrugt et al., 2003; Bekele and Nicklow, 2007; Guo et al., 2013). Com-
pared to single-objective optimization, the multi-objective optimi-
zation will get a set of so-called ‘‘differently good solutions’’ (Pareto
optimal solutions) that modelers would need to provide additional
criteria to choose between them. There is a significant advantage to
maintain the independence of the various objective functions,
because multi-objective optimization will not only allow an
analysis of the trade-offs among the different objective functions
but also enable hydrologists to better understand the limitations
of the current hydrologic model structure (Gupta et al., 1998).
However, the multi-objective parameter optimization algorithms
aforementioned in hydrology field are mostly used in single
simulation.

A higher coverage probability and narrower forecasting width
are always preferred in prediction interval. These two properties
are conflicting with the optimization perspective, as a higher cov-
erage probability will typically result in a wider forecasting width,
while a narrower width will always lead to a lower coverage prob-
ability. Therefore, multi-objective optimization algorithms can be
introduced to solve the optimization problem of the two conflict-
ing objectives. Recently Kasiviswanathan et al. (2013a) employed
Non-dominated Sorting Genetic Algorithm II (NSGA- II) multi-
objective optimization algorithm to construct prediction interval
for artificial neural network (ANN) rain-fall runoff models. In his
research, the results illustrated that an ensemble of models, gener-
ated by multi-objective optimization algorithm, provided a good
characterization of the uncertainty in rainfall-runoff model perfor-
mance. Due to the powerful flow forecasting ability of conceptual
hydrological models, the ensemble of conceptual hydrological
models can also be used for the construction of prediction interval.
Multi-Objective Shuffled Complex Differential Evolution (MOSCDE)
has been demonstrated to be more efficient than NSGA- II by five
frequently used benchmark test problems in Guo et al. (2013),
which means MOSCDE is an efficient multi-objective algorithm.
Therefore, MOSCDE algorithm is introduced in this paper to
construct prediction interval for an ensemble of conceptual hydro-
logical models, which ensures a maximum of the observed flows to
fall within the estimated range, and whose width is also minimized
simultaneously. Besides, the mean of the hydrological model
ensemble can be used as single simulation. A single hydrological

model calibrated by Shuffled Complex Evolution (SCE) is also
developed to perform single simulation for comparison.

The remainder of this paper is organized as follows: Section 2
presents a brief description of theoretical background involved in
this study. Section 3 proposes the methodology to construct pre-
diction interval for an ensemble of hydrological models. In Sec-
tion 4, a real world case study with results and discussions is
revealed. Section 5 summaries the conclusions of this study.

2. Background

2.1. HYMOD hydrological model

The HYMOD conceptual hydrological model, which is intro-
duced by Boyle (2000) and recently used by Guo et al. (2013), is
used herein to illustrate the effectiveness of the proposed method
of the prediction interval construction. This model consists of a
simple two-parameter rainfall excess model connected with two
series of linear reservoirs (three, identical, for the quick and a sin-
gle reservoir for the slow response) in parallel as a routing compo-
nent (Wagener et al., 2001). The structure of the HYMOD model is
illustrated in Fig. 1.

The model requires the calibration of five parameters: the max-
imum storage capacity in the catchment Cmax, the degree of spatial
variability of the soil moisture capacity within the catchment bexp,
the factor distributing the flow between the two series of reser-
voirs Alpha, and the residence times of the linear quick and slow
reservoirs Rq and Rs, respectively. The variable ranges of the five
parameters are listed in Table 1. Readers may refer to Moore
(1985) for detailed description of the HYMOD.

2.2. Shuffled Complex Evolution (SCE) algorithm

SCE algorithm is developed by Duan et al. (1992) for parameter
optimization of conceptual rainfall-runoff models. It is an evolu-
tionary-based procedure that simultaneously evolves a population
of solutions (parameter sets) towards better solutions in the search
space, trying to converge to the global optimum of the objective
function (Blasone et al., 2007). The procedure starts with a random
generation of an initial population of solutions in the feasible
parameter space confined by the lower and upper bounds of the
parameter values. Each individual solution is evaluated by the
objective function which describes the correspondence between a
model output variable and observed values. After the initialization,
the parameter sets are then partitioned into several sub-samples,
called complexes. The solutions in each complex are evolved
according to the simplex search method (Nelder and Mead, 1965)
in the attempt to replace the worst solutions of lowest fitness with
better ones. In this phase, each complex is evolved independently
for a certain number of generation. At last, all the individual solu-
tions from the complexes are shuffled into a new population, from
which new complexes are formed and evolved as before. This pro-
cess is repeated until some stopping criteria are satisfied. The use of
multiple complexes and their periodic shuffling operation provide
the algorithm with an effective exploration of different region of
attraction in the feasible space, thereby reducing the probability
of falling into the local optimal (Guo et al., 2013). Studies have
shown that the SCE algorithm is an effective and efficient optimiza-
tion method for the calibration of hydrological models (Madsen,
2000, 2003; Eckhardt and Arnold, 2001; Ajami et al., 2004;
Blasone et al., 2007; Zhang et al., 2013). In rainfall-runoff models
applications, SCE algorithm has also been demonstrated to be supe-
rior to other search techniques, such as the Multiple Start Simplex,
Genetic Algorithms and Simulated Annealing (Gan and Biftu, 1996;
Cooper et al., 1997; Kuczera, 1997; Franchini et al., 1998). For more
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