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s u m m a r y

A new approach to model weakly nonhydrostatic shallow water flows in open channels is proposed by
using a Lagrangian meshless method, smoothed particle hydrodynamics (SPH). The Lagrangian form of
the Boussinesq equations is solved through SPH to merge the local and convective derivatives as the
material derivative. In the numerical SPH procedure, the present study uses a predictor–corrector
method, in which the pure space derivative terms (the hydrostatic and source terms) are explicitly solved
and the mixed space and time derivatives term (the material term of B1 and B2) is computed with an
implicit scheme. It is thus a convenient tool in the processes of the space discretization compared to other
Eulerian approaches. Four typical benchmark problems in weakly nonhydrostatic shallow water flows,
including solitary wave propagation, nonlinear interaction of two solitary waves, dambreak flow propa-
gation, and undular bore development, are selected to employ model validation under the closed and
open boundary conditions. Numerical results are compared with the analytical solutions or published
laboratory and numerical results. It is found that the proposed approach is capable of resolving weakly
nonhydrostatic shallow water flows. Thus, the proposed SPH approach can supplement the lack of the
SPH–Boussinesq researches in the literatures, and provide an alternative to model weakly nonhydrostatic
shallow water flows in open channels.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to the requirement of less computational cost compared to
the Navier–Stokes equations, the shallow water equations are the
most common choice to mathematically describe many hydraulic
engineering problems in rivers and floodplains (Cunge et al.,
1980; Morris, 2000; Chaudhry, 2008). The shallow water equations
assume that the water pressure is only dependent on the total flow
depth, resulting in a hydrostatic pressure distribution over the flow
domain and the vertical motion is small enough to be neglected
(Cunge et al., 1980; Chaudhry, 2008). So far many numerical
researches (Morris, 2000) have reported that the shallow water
equations are reasonably suitable for the representation of gradu-
ally varied flows in rivers and floodplains, however, they fail to
accurately represent rapidly varied flows. For such violent flows,
the ratio of the vertical-to-horizontal scales of motion is no longer
small and the vertical acceleration significantly creates a nonhy-

drostatic pressure distribution that should be incorporated into
the equations used to route these flows.

An appropriate option for the computations of rapidly varied
flows is the Boussinesq equations, which are the depth-averaged
version by utilizing the Boussinesq assumption (Chaudhry, 2008).
They are the simplest class of mathematical models that expand
the shallow water equations with the Boussinesq terms to capture
weakly nonhydrostatic physics such as wave refraction and diffrac-
tion. The simulated outcomes based on the Boussinesq equations
have been demonstrated to provide good predictions for a range
of physical configurations such as dambreak flow transport
(Mohapatra and Chaudhry, 2004), undular bore evolution (Favre,
1935; Peregrine, 1966), and solitary wave propagation (Devkota
and Imberger, 2009). As a result, the Boussinesq equations have
been prevailing in simulating weakly nonhydrostatic shallow
water flows. In this study, the Boussinesq equations are adopted
herein to remove the restriction of the hydrostatic assumption in
the shallow water equations. The one-dimensional (1D) Bous-
sinesq equations of continuity and momentum in an Eulerian form
can be written as (Chaudhry, 2008).
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where t is the time, x is the space Cartesian coordinate, u is the
depth-averaged velocity in the x-direction, g is the gravitational
acceleration, h is the flow depth, S0 is the bed slope, and
Sf(= n2u|u|/h4/3) is the friction slope with n is the Manning rough-
ness coefficient reflecting the roughness of the bottom. Three main
terms (the hydrostatic, source and Boussinesq terms) are included
in the right-hand side of Eq. (2). The Boussinesq terms, B1, B2, and
B3 account for the effect of vertical acceleration. The physical
meaning of B1 is the local acceleration in the vertical direction
(z-direction), and B2 and B3 represent the convective acceleration
in the x- and z-direction, respectively. For weakly nonhydrostatic
shallow-water flows, the material term of B1 and B2 has major
contributions compared to the third-derivative space term of B3

(Mohapatra and Chaudhry, 2004). Therefore, it is sufficient to only
include the material term of B1 and B2 in Eq. (2) as

@u
@t
þ u

@u
@x
¼�g

@h
@x
þ gðS0 � Sf Þþ

h2

3
@

@t
@2u
@x2

 !
þ u

@

@x
@2u
@x2

 !" #
ð3Þ

Conventionally, there are a variety of numerical methods that
can be used to solve the Boussinesq equations, including finite dif-
ference methods (Zijlema et al., 2011), finite element methods
(Walters, 2005) and finite volume methods (Denlinger and
O’Connell, 2008). These Eulerian-based approaches can expend
considerable efforts to yield satisfactory discretization and to
reduce truncation errors for the nonlinear convective term using
second-order numerical schemes. Similarly, it is also necessary to
employ third- or higher-order accurate schemes to solve the
third-order Boussinesq terms (Abbott, 1979; Basco, 1989;
Chaudhry, 2008). Although such higher-order schemes have effec-
tive computations for weakly nonhydrostatic pressure correction,
they are computational tediously and may still suffer from the
challenge of grid-resolution problems (Mohapatra and Chaudhry,
2004; Devkota and Imberger, 2009). On the other side, some mesh-
less methods have been applied to hydrodynamics recently.
Among them, smoothed particle hydrodynamics (SPH) has been
proved to have some numerical advantages (Wang and Shen,
1999; Ata and Soulaimani, 2005; Rodriguez-Paz and Bonet, 2005;
De Leffe et al., 2010; Vacondio et al., 2011; Chang et al., 2011;
Kao and Chang, 2012; Vacondio et al., 2012a,b; Chang and Chang,
2013), which are adequate to be used in solving the Boussinesq
equations. Firstly, SPH is a particle method with Lagrangian nature.
Particles move with the flow, and the convective term is merged
into the material derivative so that the numerical dispersion error
resulting from the convective term can be directly eliminated
(Devkota and Imberger, 2009). The Lagrangian form of the 1D
Boussinesq equations of continuity and momentum can be rewrit-
ten from Eqs. (1) and (3) as
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represents the material derivative. Obviously,

in Eqs. (4) and (5), the Lagrangian description merges the local
and convective derivatives as the material derivative.

In addition, SPH allows water particles freely moving in the
computational domain without being confined in a fixed mesh.
Consequently, SPH can conserve mass exactly and has strong capa-
bility to deal with large deformation problems (Liu and Liu, 2003).
Therefore, it is a suitable numerical tool to solve the aforemen-
tioned issues. Standard SPH is basically designed to formulate the
Navier–Stokes equations (Liu and Liu, 2003, 2010). So far only few
studies have attempted to extend SPH to the shallow water equa-
tions. Wang and Shen (1999) investigated inviscid dam-break
flows using SPH. Ata and Soulaimani (2005) proposed the stabiliza-
tion term of SPH formulation. Rodriguez-Paz and Bonet (2005) pre-
sented a corrected variational SPH formulation for shallow water
flows to conserve both the total mass and momentum. De Leffe
et al. (2010) adopted an anisotropic kernel with variable smooth-
ing length and performed SPH modeling of shallow-water coastal
flows. Vacondio et al. (2011) used the characteristic boundary
method into SPH formulation to simulate rectangular prismatic
channel flows with open boundaries. Chang et al. (2011), and
Kao and Chang (2012) applied SPH modeling to investigate
shallow-water dambreak flows in realistic open channels and
floodplains. Vacondio et al. (2012a,b) improved SPH for the closed
boundary conditions by using virtual particles and introduced a
particle-splitting procedure for addressing the issue of adequate
particle-resolution in small-depth problems. Chang and Chang
(2013) developed a new SPH scheme to solve the characteristic
equations and to establish the open boundaries in non-rectangular
and non-prismatic channel flows with the method of specified time
intervals. Nevertheless, there still lacks research efforts that have
utilized SPH to simulate the Boussinesq equations for investigating
weakly nonhydrostatic shallow water flows.

To fill this gap, this study aims to develop a new SPH approach
for investigating weakly nonhydrostatic shallow water flows.
Firstly, the Lagrangian form of the 1D Boussinesq equations is
derived. The numerical procedure of how to solve the above equa-
tions with SPH is given. Next, a comparison of the numerical
results with the analytical solutions or published laboratory data
is examined through four benchmark problems (solitary wave
propagation, nonlinear interaction of two solitary waves,
dambreak flow propagation, and undular bore development). The
benefits and limits of the present SPH modeling are discussed.

2. Numerical method

Eqs. (4) and (5) are the 1D time-dependent hyperbolic system of
partial differential equations. Generalized analytical solutions are
not feasible for these equations. As a result, a numerical approach
should be adopted to obtain the numerical solutions. In this study,
a Lagrangian meshless SPH is adopted to solve Eqs. (4) and (5). In
this numerical procedure, the pure space derivative terms (the
hydrostatic and source terms) and the mixed space and time
derivatives term (the material term of B1 and B2) of Eq. (5) are
decomposed. The pure space derivative terms are explicitly solved
through the predictor–corrector computational framework to give
an intermediate value, and then the mixed space and time
derivatives term is applied for computational correction with an
implicit time-integration scheme.
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