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s u m m a r y

Exact solutions of partial differential equation models describing the transport and decay of single and
coupled multispecies problems can provide insight into the fate and transport of solutes in saturated
aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that
the initial condition is restricted in the sense that the choice of initial condition has an important impact
on whether or not the inverse transform can be calculated exactly. In this work we describe and
implement a technique that produces exact solutions for single and multispecies reactive transport
problems with more general, smooth initial conditions. We achieve this by using a different method to
invert a Laplace transform which produces a power series solution. To demonstrate the utility of this
technique, we apply it to two example problems with initial conditions that cannot be solved exactly using
traditional transform techniques.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models describing the transport and reaction of
dissolved solutes in saturated porous media can play an important
role in informing our understanding of contaminant fate and
transport processes (Bear, 1972; Domenico, 1987; Remson et al.,
1971; Wang and Anderson, 1982; Zheng and Bennett, 2002). For
some modeling projects, it is relevant to implement a detailed
numerical model that can account for multidimensional,
multispecies, nonlinear reactive transport processes (Clement
et al., 1998; Clement, 2011; Molz et al., 1986; Zheng and Wang,
1999). In other cases, where insufficient data or finances are
available to support the use of a detailed numerical model, a simpler
approach, based on an analytical solution of a linear partial
differential equation (pde) model, could be more relevant (Clement,
2011; Jones et al., 2006).

Several previous researchers have sought to develop exact
solutions to systems of coupled linear advection diffusion reaction
equations with decay-chain reaction process. In 1971, Cho (1971)
presented an exact solution of a one-dimensional model represent-
ing the reactive transport of a system with three components
describing nitrification processes. van Genuchten and Wierenga

(1976) and van Genuchten (1981, 1985) derived similar exact
solutions for decay-chain processes with more complicated inlet
boundary conditions and for a system that made an explicit distinc-
tion between mobile and immobile species (van Genuchten and
Wierenga, 1976; van Genuchten, 1981, 1985). All of these studies
were based on solving the governing pde using a Laplace transform
technique which meant that the approach was only relevant for
relatively simple initial conditions. Both Cho (1971) and van
Genuchten and Wierenga (1976, 1981, 1985) focused on problems
where the domain was initially free of solutes. Building on these
previous investigations, Lunn et al. (1996) presented exact solu-
tions of the system studied by Cho (1971) using a Fourier transform
method. This approach allowed Lunn to solve the system for more
complicated initial conditions including a constant non-zero initial
condition, and an exponentially decaying initial condition.

Further developments of exact or semianalytical solutions
of coupled linear advection diffusion reaction equations with
decay-chain reaction networks have also been reported. These
include extensions to any number of species in the reaction
network (Clement, 2000), the presence of distinct equilibrium
reactions represented by different retardation factors (Srinivasan
and Clement, 2008a,b) as well as dealing with reactive transport
processes in two- and three-dimensions (Jones et al., 2006; Sudicky
et al., 2013; Wexler, 1992). Approaches based on Green’s functions
(Kreyszig, 2006) have also been used successfully to analyze two-
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and three-dimensional transport problems with persistent source
terms (Leij et al., 2000). More recent developments have included
semianalytical solutions for mathematical models where the
transport coefficients are spatially variable (Suk, 2013). Regardless
of these developments, we note that previously-reported solution
methods based on an integral transform technique are restricted
in the sense that they require a relatively simple initial condition
to permit the exact calculation of the inverse transform. For exam-
ple, van Genuchten and Wierenga (1976) and van Genuchten
(1985) considered a solute-free initial condition; Lunn et al.
(1996) considered either a spatially constant or exponentially
decaying initial condition; and Srinivasan and Clement (2008a,b)
focused on an exponentially decaying initial condition. One of the
limitations of these previous methods is that they cannot be applied
to other kinds of initial conditions. If, for example, we wished to
study the reactive transport of a system with some initial distribu-
tion of solute that is neither spatially uniform or decaying exponen-
tially with position, it is impossible to use any of these previous
methods to provide an exact solution. These restrictions motivated
the recent work by Wang et al. (2011) who proposed an approxi-
mate superposition method to solve reactive transport pdes with
nonzero initial conditions. While this recent work did not provide
any exact solutions to the governing pde model, they did provide
insight into conditions where their approximation provided useful
information (Wang et al., 2011).

In this work we describe and implement a method that provides
an exact power series solution for linear reactive transport
problems for more general initial conditions. Our method involves
a different way of calculating an inverse Laplace transform and this
allows us to consider more general, smooth, non-zero initial
conditions, such as nonmonotone functions, which have not been
dealt with previously in an exact mathematical framework. In addi-
tion to presenting the theoretical aspects of our approach, we also
present two example calculations. The first example calculation is
for a single species reactive transport model where we consider a
nonmonotone initial condition for which traditional transform
inversion techniques are not applicable. Second, we consider a
coupled problem where again we chose a nonmonotone initial
condition which means that traditional exact inverse transform
techniques are not applicable. For both cases we compare our trun-
cated power series solutions with numerical calculations to confirm
that the proposed method produces accurate results. We conclude
by pointing out how our method can be implemented in a very
straightforward way using symbolic software and we provide
Maple code as supplementary material.

2. Theory

To demonstrate our approach, we first outline how our method
allows us to recover a simple function from its Laplace transform
without the use of mathematical tables or calculating the inverse
transform numerically (e.g., De Hoog et al., 1982). We begin by
considering some function f ðtÞ, and the Laplace transform of that
function, which can be written as

L f ðtÞf g ¼
Z 1

0
f ðtÞe�st dt; ð1Þ

where s is the Laplace transform parameter chosen such that the
improper integral converges (Beerends et al., 2003; Debnath and
Bhatta, 2007; Kreyszig, 2006; Zill and Cullen, 1992). For suitable

choices of f ðtÞ, such that limt!1
dnf ðtÞ

dtn e�st
h i

¼ 0 for all n, repeated

application of integration by parts to Eq. (1) gives us

L f ðtÞf g ¼ 1
s

f ð0Þ þ 1
s

df ð0Þ
dt
þ 1

s2

d2f ð0Þ
dt2 þ 1

s3

d3f ð0Þ
dt3 þ . . .

" #
: ð2Þ

Eq. (2) leads to the initial value theorem (Beerends et al., 2003;
Debnath and Bhatta, 2007; Ellery et al., 2013)

lim
s!1

sL f ðtÞf g½ � ¼ f ð0Þ; ð3Þ

allowing us to calculate the initial value of the function, f ð0Þ,
directly from L f ðtÞf g without needing to explicitly invert the
Laplace transform. We may extend the initial value theorem by

making a change of variables, let gðtÞ ¼ dnf ðtÞ
dtn , so that we have

lims!1 sL gðtÞf g½ � ¼ gð0Þ. Re-stating this result in terms of the
original variables gives us

lim
s!1

sL dnf ðtÞ
dtn

� �� �
¼ dnf ð0Þ

dtn ; ð4Þ

which means that if we know the Laplace transform of the nth
derivative of a function, we can evaluate the nth derivative of that
function at t ¼ 0 without explicitly inverting the transform. Since
we know that the Laplace transform of the nth derivative of a
function (Beerends et al., 2003, Debnath and Bhatta, 2007, Kreyszig,
2006 and Zill and Cullen, 1992) is given by

L dnf ðtÞ
dtn

� �
¼ snL f ðtÞf g �

Xn

k¼1

dk�1f ð0Þ
dtk�1 sn�k; ð5Þ

we can re-express Eq. (4) as

dnf ð0Þ
dtn ¼ lim

s!1
snþ1L f ðtÞf g � s

Xn

k¼1

dk�1f ð0Þ
dtk�1 sn�k

" #
; ð6Þ

which means that given L f ðtÞf g, we can calculate all the derivatives
of f ðtÞ at t ¼ 0. With this information we may then construct a
Maclaurin series

f ðtÞ ¼
X1
i¼0

dif ð0Þ
dti

ti

i!
: ð7Þ

Therefore, for a particular function f ðtÞ, for which we can
calculate the Laplace transform, L f ðtÞf g, we may reconstruct the
function using Eqs. (6) and (7). The reconstruction of f ðtÞ does
not depend on calculating the inverse transform. For the practical
implementation of the Maclaurin series representation of f ðtÞ, we
must truncate Eq. (7) after I terms. We will show, by example, that
it is often straightforward to obtain reasonably accurate solutions
with a relatively modest value of I.

To demonstrate how we might make use of this result, let us
consider the straightforward case of f ðtÞ ¼ eat , for which the Laplace
transform is L f ðtÞf g ¼ 1=ðs� aÞ, with s > a (Kreyszig, 2006; Zill and
Cullen, 1992). Using Eq. (6) we rapidly see that we have

df
dt
ð0Þ ¼ a;

d2f
dt2 ð0Þ ¼ a2;

d3f
dt3 ð0Þ ¼ a3;

d4f
dt4 ð0Þ ¼ a4; . . . ð8Þ

which, using Eq. (7), allows us to reconstruct the well-known
Maclaurin series for the exponential function

eat ¼ 1þ at þ ðatÞ2

2!
þ ðatÞ3

3!
þ ðatÞ4

4!
þ . . . : ð9Þ

In summary, Eq. (6) gives us an alternative method for inverting
a Laplace transform. Instead of using mathematical tables
(Kreyszig, 2006; Zill and Cullen, 1992) or numerical inversion (De
Hoog et al., 1982), if we have an explicit formula for L f ðtÞf g, even
without any knowledge of f ðtÞ, we can recover the Maclaurin series
representation of f ðtÞ without difficulty, provided that the function
is sufficiently smooth. We note that power series solutions have
been used previously to study several practical problems of inter-
est in subsurface hydrology (Philip, 1957a; Philip, 1957b), chemical
engineering (Ellery and Simpson, 2011) and bioengineering
(Simpson and Ellery, 2012). Although we aim to demonstrate the
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