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Constructive epistemic modeling is the idea that our understanding of a natural system through a
scientific model is a mental construct that continually develops through learning about and from the
model. Using hierarchical Bayesian model averaging (BMA), this study shows that segregating different
uncertain model components through a BMA tree of posterior model probability, model prediction,
within-model variance, between-model variance and total model variance serves as a learning tool. First,
the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate
propositions of each uncertain model component. Second, systemic model dissection is imperative for
understanding the individual contribution of each uncertain model component to the model prediction
and variance. Third, the hierarchical representation of the between-model variance facilitates the prior-
itization of the contribution of each uncertain model component to the overall model uncertainty. We
illustrate these concepts using the groundwater flow model of a siliciclastic aquifer-fault system. We con-
sider four uncertain model components. With respect to geological structure uncertainty, we consider
three methods for reconstructing the hydrofacies architecture of the aquifer-fault system, and two forma-
tion dips. We consider two uncertain boundary conditions, each having two candidate propositions.
Through combinatorial design, these four uncertain model components with their candidate propositions
result in 24 base models. The study shows that hierarchical BMA analysis helps in advancing knowledge
about the model rather than forcing the model to fit a particularly understanding or merely averaging
several candidate models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

environment is not unique, which is due to several reasons. First,
the characteristics of the spatial variability remain “imperfectly

Our belief about a system is the core element of Bayesian mod-
eling. From this perspective, a groundwater flow model can be
viewed as a mental construct that aims at simulating our empirical,
theoretical and abstract understanding of the flow field in the nat-
ural aquifer. In other words, we do not simulate the natural flow
field, but rather we are simulating our current degree of knowledge
about the flow field of the natural system. Accordingly, the treat-
ment of uncertainty is essential since several candidate knowledge
propositions exist about the model data, structure, parameters and
processes.

Data uncertainty arises from different measurement techniques,
measurement errors and mathematical expressions for data inter-
pretation (Singha et al., 2007). Model structural uncertainty arises
because the model approximate representation of the complex
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known” (Cardiff and Kitanidis, 2009). Second, different heterogene-
ity conceptualizations lead to diverse mathematical expressions for
quantitative spatial relationships (Kitanidis, 1986; Koltermann and
Gorelick, 1996; Refsgaard et al., 2012). Third, due to the scarcity of
subsurface data, quantitative methods cannot generally afford a
precise description of the complex spatial subsurface geological
variations (e.g., Sakaki et al., 2009; Li et al., 2012). Parameter uncer-
tainty arises from the precision of the estimated model parameters.
This precision is a factor of maximum likelihood estimation in a
rugged, nonseparable and noisy search landscape. A second inher-
ent challenge of parameter estimation is ill-posedness that arises
mainly from nonuniqueness and insensitivity (Yeh, 1986; Carrera
and Neuman, 1986). The situation is even more intricate since
model structure inadequacy can be compensated by biased param-
eter estimation, and the model solution can be biased toward unob-
served variables in the model (Refsgaard et al., 2006). For a current
discussion on the uncertainty of groundwater model simulation
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and prediction, the reader is referred to Gupta et al. (2012). Yet
based on this brief account, we bring a fundamental question of
how to bridge the gap between synthetic mental principles such
as mathematical expressions, and empirical observations such as
site observation data, when uncertainty exists on both sides.

Using multiple models to account for uncertainty resulting from
model data, structure, parameters and processes, strategies as
model selection (Poeter and Anderson, 2005), model elimination
(Refsgaard et al, 2006), model reduction (Doherty and
Christensen, 2011), model combination (Neuman, 2003; Neuman
and Wierenga, 2003; Ye et al., 2004; Tsai and Li, 2008a,2008b,
Rojas et al., 2008, 2010; Woéhling and Vrugt, 2008; Li and Tsai,
2009; Singh et al., 2010; Troldborg et al.,, 2010; Seifert et al.,
2012) and model discrimination (Usunoff et al., 1992; Tsai et al.,
2003; Ye et al.,, 2010; Foglia et al., 2013; Tsai and Elshall, 2013)
are commonly used. A main concern among these different strate-
gies is the incorporation of different candidate knowledge proposi-
tions and the uncertainty quantification. A more critical and less
acknowledged concern is epistemic uncertainty (Refsgaard et al.,
2006, 2007; Clark et al., 2011; Gupta et al.,, 2012; Beven and
Young, 2013), which refers to “the uncertainty due to imperfect
knowledge” (Refsgaard et al., 2007). To account for our ignorance,
which is the lack of knowledge and the incorrect understanding,
epistemic uncertainty is commonly addressed through possibility
theory, imprecise probability or pedigree analysis (Agarwal et al.,
2004; Refsgaard et al., 2006; Baudrit et al., 2007; He et al., 2008).

In this study we present a complementing prospective on epi-
stemic uncertainty through hierarchical Bayesian model averaging
(BMA) analysis (Tsai and Elshall, 2013). The basic element of the
hierarchical BMA analysis is the base models, which are all of the
considered models. The base models are developed following a
combinatorial design to represent the candidate propositions of
all sources of uncertainty. Selecting the base models in hierarchical
BMA is flexible since new propositions for an uncertain model
component can be readily incorporated. However, if we are inter-
ested in obtaining a BMA solution based on all the base models,
this brings the question of how to select the base models such that
to have a collectively exhaustive set of models. Fundamentally, the
hierarchical BMA does not overcome this problem since in princi-
pal it presents the general form of the collection BMA in Hoeting
et al. (1999). However, unlike the collection BMA in which our
modeling approach is oriented toward obtaining a BMA solution
(i.e., BMA prediction and variance), the hierarchical BMA aims at
shifting to a constructive epistemic modeling approach, in which
candidate model propositions are tested to learn about individual
model components and potentially model adequacy.

The notion “constructive” is basically that “to know the truth
means essentially to construct such a truth” (Primiero, 2008). Con-
structive epistemology is a “meta science” way of thinking that
assumes that the mental world is actively constructed, in which
there is a developmental path from some initial state, rather than a
teleological progress towards some final state (Riegler, 2012). From
this prospective, the hierarchical BMA treatment acknowledges epi-
stemic uncertainty, which is mainly that the base models are incom-
plete since they do not collectively exhaust the space of possible
models. The hierarchical BMA treatment acknowledges as well that
it could be the case that some model propositions can be incorrectly
included in the model (Gupta et al., 2012). Accordingly, constructive
epistemic modeling is in agreement with what Christakos (2004)
proposes that regarding the model solution as epistemic, in which
the model describes incomplete knowledge about nature and
focuses on knowledge synthesis, can lead to more realistic results
than the (conventional) ontological solution that assumes that the
model describes nature per se and focuses on form manipulations.

However, acknowledging the use of an incomplete set of base
models brings the question of the statistical meaning of the posterior

model probabilities. As presented by Renard et al. (2010), since a
BMA key assumption is that the supplied set of models is complete,
which is difficult to achieve in practice, then “it is unclear what the
posterior predictive uncertainty actually represents when this
assumption is not met”. Following Williamson (2005), one can make
the argument that an objective probabilistic decision for a specific
model, which has no obvious collective (von Mises, 1964), repeat-
able experiment (Popper, 1959) or chance fixer (Popper, 1990) con-
cerning its physical probability, one needs to ascribe an “epistemic
probability” (Williamson, 2005) to this model as a function of our
factual knowledge. Under the epistemic probability stance, proba-
bility is viewed as being neither physical mind-independent features
of the world nor arbitrary and subjective entities, but rather an
objective degree of belief (Williamson, 2005) since it does not vary
from one agent to another because it is coherent and honors data.
Ellison (2004) states that “posterior probability distributions are
an epistemological alternative to P-values, and provide a direct mea-
sure of the degree of belief that can be placed on models, hypotheses,
or parameter estimates”. Accordingly, the posterior predictive vari-
ance, which is a function of posterior model probabilities, presents
under BMA neither the true variance nor a representation of any fre-
quency. It simply represents the uncertainty of our current state of
knowledge as this study shows. It is noted that a P-value is the signif-
icance probability for testing null-hypothesis (Schervish, 1996).

Essentially, true variance can only be known if we know the
deviation from the true model, which is almost not possible
(Rubin, 2003). Even if the “true model” is known, the question still
whether synthetic mental principles - such as mathematical
expressions and conceptualization of spatial variability — are state-
ments of what exist externally in nature, or they are mental state-
ments based on relative empirical observation and their inherent
shortcomings as pointed out by Jaynes (1990, 2003). Following a
similar line of thought, Gupta et al. (2012) propose revising the
commonly used term “model structure error” with “model struc-
ture adequacy”, since the former term “implies the existence of
some ‘true’ value from which the difference can (in principle) be
measured”. This last point suggests the plausibility of “epistemic
probability” (Williamson, 2005), and the plausibility of accommo-
dating different candidate model propositions in a constructive
epistemic framework that is guided by scientific reasoning.

This research develops groundwater models of a siliciclastic
aquifer-fault system to illustrate the use of hierarchical BMA as a
constructive epistemic framework, which advances knowledge
about the model rather than forcing the model to fit a particular
understanding or merely averaging several candidate models as
some final teleological state. In other words, the modeling objec-
tive is to use the BMA trees of posterior model probability, predic-
tion and variance to increase learning. The groundwater model
construction involves four uncertain model components, which
are the hydrofacies architecture reconstruction method, the geo-
logical formation dip and two uncertain boundary conditions.
Through dissecting the uncertain model components, the hierar-
chical BMA allows for comparative evaluation of candidate model
propositions, for prioritizing the uncertain model components,
for depicting the prediction and uncertainty propagation, and
finally for updating our knowledge about the model.

2. Methodology
2.1. Hierarchal Bayesian model averaging

In this study we extend the hierarchal Bayesian model averaging
(BMA) methodology in Tsai and Elshall (2013) to account for prior

model probability. This shall allow the use of geological models as
prior information for groundwater flow models to link geological
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