
Probabilistic flood forecast: Exact and approximate predictive
distributions

Roman Krzysztofowicz ⇑
Department of Systems Engineering, University of Virginia, P.O. Box 400747, Charlottesville, VA 22904-4747, USA
Department of Statistics, University of Virginia, P.O. Box 400747, Charlottesville, VA 22904-4747, USA

a r t i c l e i n f o

Article history:
Received 4 December 2013
Received in revised form 16 April 2014
Accepted 20 April 2014
Available online 9 June 2014
This manuscript was handled by
Konstantine P. Georgakakos, Editor-in-Chief

Keywords:
Stochastic processes
Statistical analysis
Probability
Rivers
Floods

s u m m a r y

For quantification of predictive uncertainty at the forecast time t0, the future hydrograph is viewed as a
discrete-time continuous-state stochastic process fHn : n ¼ 1; . . . ;Ng, where Hn is the river stage at time
instance tn > t0. The probabilistic flood forecast (PFF) should specify a sequence of exceedance functions
fFn : n ¼ 1; . . . ;Ng such that FnðhÞ ¼ PðZn > hÞ, where P stands for probability, and Zn is the maximum
river stage within time interval ðt0; tn�, practically Zn ¼ maxfH1; . . . ;Hng. This article presents a method
for deriving the exact PFF from a probabilistic stage transition forecast (PSTF) produced by the Bayesian
forecasting system (BFS). It then recalls (i) the bounds on Fn, which can be derived cheaply from a
probabilistic river stage forecast (PRSF) produced by a simpler version of the BFS, and (ii) an approximation
to Fn, which can be constructed from the bounds via a recursive linear interpolator (RLI) without informa-
tion about the stochastic dependence in the process fH1; . . . ;Hng, as this information is not provided by
the PRSF. The RLI is substantiated by comparing the approximate PFF against the exact PFF. Being
reasonably accurate and very simple, the RLI may be attractive for real-time flood forecasting in systems
of lesser complexity. All methods are illustrated with a case study for a 1430 km2 headwater basin
wherein the PFF is produced for a 72-h interval discretized into 6-h steps.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Probabilistic flood forecast

Flood warning-response systems are designed and operated to
mitigate the consequences of extreme river stages induced by
heavy rainfall or rapid snowmelt. They achieve their purpose by
supporting decisions of emergency managers and floodplain
dwellers (Krzysztofowicz and Davis, 1983, 1984). The key one is
to decide whether or not to issue a flood warning for a zone of
the floodplain (Krzysztofowicz, 1993). To make such a decision
optimally, the system needs quantitative information about the
predictive uncertainty (Krzysztofowicz, 2001) associated with
the maximum river stage within a time interval. To implement
the optimal decision effectively, the system needs sufficient lead
time. This, in turn, requires that a hydrologic forecast be based on
a meteorological forecast (Georgakakos, 1986; Lardet and Obled,
1994), and that the uncertainty in both forecasts be integrated.

The purpose of the probabilistic flood forecast (PFF) is to provide
information needed by a flood warning system. As such, the PFF
should specify a sequence of exceedance functions of maximum
river stages within time intervals that form a nested set (Hoffman,
1975): ðt0; t1� � ðt0; t2� � � � � � ðt0; tN�, where t0 is the forecast time
and t1 < t2 < � � � < tN are future times. The notion of the nested time
intervals is essential for two reasons. First, it is needed to quantify
the total risk of flooding from a rainfall event or a snowmelt event
(or a portion thereof that is covered by a rainfall or temperature
forecast upon which the PFF is based). Second, it is needed to capture
the uncertainty about the timing of the flood crest and thereby to
allow the decisions to be made dynamically and adaptively (rather
than statically). This article shows how to construct the PFF, exactly
or approximately, from the outputs of a Bayesian forecasting system
(Krzysztofowicz and Maranzano, 2004).

1.2. Bayesian forecasting system

The Bayesian theory provides a general mathematical and meth-
odological framework for probabilistic forecasting of river processes
(time series of stages, discharges, or volumes) via a deterministic
hydrologic model of any complexity (Krzysztofowicz, 1999). For
short-term forecasting in small-to-medium headwater basins, the
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theory was implemented as an analytic-numerical Bayesian
forecasting system (BFS). Two versions of this system have been
developed to date for forecasting a discrete-time, continuous-state
stochastic process fHn : n ¼ 1; . . . ;Ng with lead time of N time
steps. Each version takes a probabilistic quantitative precipitation
forecast (PQPF) as input and employs a deterministic hydrologic
model to calculate the response of a river basin to precipitation.

The first BFS outputs a probabilistic river stage forecast (PRSF) in
the form of a sequence of predictive n-step transition density func-
tions (Krzysztofowicz, 2002a):

fwn : n ¼ 1; . . . ;Ng;

where

wn hnð Þ ¼ p hnjh0; PQPF;u0ð Þ:

That is, wn is the predictive density function p of river stage Hn at time
tn, conditional on (i) the river stage H0 ¼ h0 observed at the forecast
time t0, (ii) the PQPF for the river basin, (iii) the vector u0 of determin-
istic inputs to the hydrologic model (except future precipitation),
which are needed to produce a deterministic forecast and whose val-
ues vary from one forecast time to the next (e.g., initial model states),
and (iv) the hydrologic model of the river basin (implicit in u0) with
parameters estimated for the given forecast point. With respect to the
stochastic process fHn : n ¼ 1; . . . ;Ng, function wn characterizes the
uncertainty in the n-step transition from the observed (initial) river
stage H0 ¼ h0 to the future river stage Hn, conditional on PQPF and
u0. The conditioning on ðh0; PQPF;u0Þ, whose value is fixed at the
forecast time, is suppressed in the operational notation wn. But it is
crucial for the understanding: this conditioning shows that the river
stage process is forecasted as a fully dependent stochastic process (of
order N). Still the PRSF does not provide a complete characterization
of this process: it does not provide the predictive joint density func-
tion of the river stages H1; . . . ;HN .

The second BFS outputs a probabilistic stage transition forecast
(PSTF) in the form of a sequence of families of predictive one-step
transition density functions (Krzysztofowicz and Maranzano,
2004): w1 and

fhnð�jhn�1; . . . ;h1Þ : all h1; . . . ;hn�1; n ¼ 2; . . . ;Ng;

where

hnðhnjhn�1; . . . ; h1Þ ¼ pðhnjhn�1; . . . ; h1;h0; PQPF;u0Þ:

That is, hnð�jhn�1; . . . ;h1Þ is the predictive density function p of river
stage Hn at time tn, conditional on (i) the river stages
Hn�1 ¼ hn�1; . . . ;H1 ¼ h1 at the preceding times, (ii) the river stage
H0 ¼ h0 observed at the forecast time, (iii) the PQPF, (iv) the vector u0

of deterministic inputs to the hydrologic model, and (v) the hydrologic
model (implicit in u0). With respect to the stochastic process
fHn : n ¼ 1; . . . ;Ng, function hnð�jhn�1; . . . ; h1Þ characterizes the uncer-
tainty in the one-step transition from the observed (initial) river stage
H0 ¼ h0 and the hypothesized (preceding) river stages
H1 ¼ h1; . . . ;Hn�1 ¼ hn�1, to the next river stage Hn, conditional on PQPF
and u0. As before, the conditioning on ðh0; PQPF;u0Þ, whose value is
fixed at the forecast time, is suppressed in the operational notation hn.

The PSTF is exact in the sense that the product of the predictive
one-step transition density functions gives the predictive joint
density function of the river stages H1; . . . ;HN:

nNðh1; . . . ;hNÞ ¼ w1ðh1Þ
YN

n¼2

hnðhnjhn�1; . . . ; h1Þ:

Two properties of nN are evident: (i) that it is conditional on
ðh0; PQPF;u0Þ, and (ii) that it predicts the river stage process as a
fully dependent stochastic process (of order N). Therefore, the PSTF
provides a complete, analytic characterization of predictive uncer-
tainty about the river stage process fHn : n ¼ 1; . . . ;Ng.

A previous article (Krzysztofowicz, 2002b) showed how to
construct bounds on and approximations to the PFF from a PRSF
alone. This article shows how to construct the exact PFF from a
PSTF – more specifically, from the source elements which are
output by the BFS and which are used to construct the PSTF (and
which can, as well, be used to construct the PRSF).

1.3. Overview

Section 2 formally defines the PFF. Section 3 derives the theo-
retical relation between the PSTF and the PFF and presents a
numerical algorithm for efficient calculation of the PFF. Section 4
reports a case study, explains three kinds of forecast products,
and describes an analytic procedure for updating the PFF based
on a partially updated PQPF. Section 5 reviews the theory of
bounds on the PFF that can be derived from the PRSF. Section 6
recalls a recursive linear interpolator (RLI) based on the bounds,
which processes a PRSF into an estimate of the PFF; then by com-
paring this estimate with the exact PFF derived from the PSTF, it
reports the first empirical substantiation of the RLI.

2. Definition of probabilistic flood forecast

Let t0 denote the forecast time, and let tn ðn ¼ 1; . . . ;NÞ denote
the time at which the river stage being forecasted will be observed.
The lead time of the forecast prepared at time t0 for time tn is
tn � t0. For simplicity, index n itself will sometimes be referred to
as lead time. Next define

Hn is the river stage at time tn; it is a continuous variate which
may take any value above the gauge datum.
Zn is the maximum river stage within time interval ðt0; tn�; it is a
continuous variate which for a discrete-time river stage process
fH1; . . . ;Hng is defined as

Zn ¼max fH1; . . . ;Hng: ð1Þ

Fn is the exceedance function of maximum river stage Zn, such
that for any level h

FnðhÞ¼ PðZn >hÞ¼1�PðZn6hÞ¼1�PðH16h; . . . ;Hn6hÞ;
ð2Þ

that is, FnðhÞ is the probability of the maximum river stage Zn within time
interval ðt0; tn� exceeding level h. Alternatively, it is the probability of at
least one among the n river stages H1; . . . ;Hn exceeding level h.

The PFF is defined henceforth as a sequence of exceedance
functions

fFn : n ¼ 1; . . . ;Ng: ð3Þ

Given the PFF, the probability distributions needed for a flood
warning system can readily be obtained (Kelly and Krzysztofowicz,
1994).

3. Theory of probabilistic flood forecast

3.1. Uncertainty processors

In the BFS, the total uncertainty is decomposed into precipita-
tion uncertainty and hydrologic uncertainty. Precipitation uncer-
tainty is associated with the total basin average precipitation
amount during the period covered by the PQPF. Hydrologic
uncertainty is the aggregate of all uncertainties arising from
sources other than the total basin average precipitation amount.

The two sources of uncertainty are quantified independently
and then are integrated. For this purpose, two processors are
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