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s u m m a r y

The paper presents certain exact solutions describing the vertical movement of a water pulse through a
semi-infinite unsaturated porous column. The saturation-based form of the Richards’ equation is used
with special power law relative-permeability functions. Both capillary and gravity effects are taken into
account. Three exact solutions are derived corresponding to three relative-permeability functions, linear,
quadratic and cubic. The Richards’ equation is nonlinear for the three cases. The solutions are obtained by
applying a general similarity transformation. They are explicit in space and time variables and do not
contain any approximation. They describe the evolution of the water saturation in the vertical column
and they can be used to predict the post-infiltration movement of a finite quantity of water. Exact expres-
sions of the masses of water leaving a given depth are also derived for the three cases. We analyze the
effect of relative-permeability and capillary pressure. The proposed solutions are also useful for checking
numerical schemes. One of the exact solutions is used to validate numerical solution obtained from an
arbitrary initial condition. Results show that the numerical solution converges to the exact solution for
large times.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The unsaturated zone, also called the vadose zone, plays a cru-
cial role in subsurface hydrology and irrigation engineering
because this zone controls, to a large degree, the transmission of
water to aquifers and it is often regarded as a filter which removes
undesirable substances before they affect aquifers (Stephens,
1996; Selker et al., 1999). In the past few decades, problems related
to infiltration through the unsaturated zone have received more
attention than those related to the post-infiltration stage by soil
physicists and hydrologists. However, prediction and understand-
ing of the movement of water that has infiltrated into the unsatu-
rated zone is an important problem in hydrology and irrigation
engineering since it determines the amount of water stored near
the soil surface and the range of time that this quantity of water
remains available for plant uptake (Sander et al., 1991). Conse-
quently, a considerable amount of effort has been devoted in soil
science to the mathematical modeling of water redistribution in
the unsaturated zone (Warrick, 2003; Philip, 1991; Sander et al.,
1991; Raats and van Duijn, 1995; Wallach and Jortzick, 2008;
Pop et al., 2009; Doster et al., 2012).

The vertical movement of water in the unsaturated zone is gen-
erally governed by two forces: capillarity and gravity. Richards’
equation is traditionally used to describe the water movement in
the unsaturated zone. This equation can be written in different
forms: water content-based form, pressure-based (hydraulic head)
form, mixed form or the saturation-based form. Wu and Pan (2003)
used the saturation-based form by neglecting gravity effects to
study the transient flow into unsaturated rock matrix. They linear-
ized the Richards’ equation by using special relative-permeability
and capillary pressure functions. In this paper we adopt this form
of the Richards’ equation and we additionally take into account
gravity effects. This form is a simplified representation of a two-
phase flow model where the two phases are water and air, respec-
tively. The main factors which allow such simplification are: (1)
the low density of air which is about three orders of magnitude less
than the density of water, leading to negligible changes in pressure
in the vertical direction; (2) the low viscosity of air which is about
two orders of magnitude less than the viscosity of water, which
means that air can move under very small air pressure gradient.
Accordingly, the Richards’ equation can be written as a nonlinear
advection–diffusion equation where the primary variable is the
water saturation. Nonlinearity comes from the complicated rela-
tionships between relative-permeability—saturation and capillary
pressure—saturation. Because of the nonlinear nature of the
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Richards’ equation, exact analytical solutions are generally difficult
to obtain. Several papers dealing with analytical solutions of the
nonlinear Richards’ equation have been published over the past
few decades. Among these papers we cite the works of Philip
(1969), Sander et al. (1988), Broadbridge and White (1988),
Zimmerman and Bodvarsson (1989, 1990, 1995), Warrick et al.
(1990, 1991), Kühnel et al. (1990), Sander et al. (1991), Marinelli
and Durnford (1998), Serrano (2004), Triadis and Broadbridge
(2010), Basha (2011), and Nasseri et al. (2012). Analytical solutions
exist also for the full system of two-phase flow which may be used
also as solutions of the Richards’ equation after making the above
mentioned simplification (see for instance, McWhorter and Sunada
(1990), van Duijn and De Neef (1998), and Fučík et al. (2007, 2008,
2010)). Some of these analytical solutions are approximate
solutions and the others are relatively complex to use since they
are presented in parametric form or infinite series. Exact explicit
solutions, if they exist, provide good insight into many subsurface
flow problems and they can be considered as reference solutions
for checking the accuracy of various numerical methods.

Based on the saturation form, we propose some exact solutions
of the one-dimensional Richards’ equation by using special power
law relative-permeability and capillary pressure functions. Such
power law functions are frequently used in the literature (Brooks
and Corey, 1964; Campbell, 1985; Honarpour et al., 1986;
Warrick, 2003; Wu and Pan, 2003, 2005). We derive three exact
solutions for nonlinear and non-hysteretic migration of a finite
water pulse through a semi-infinite column taking into account cap-
illary and gravity effects. The three exact solutions correspond to
three relative-permeability functions: linear, quadratic and cubic.
Several authors used these relative-permeability functions in the
literature (see, e.g., (Garg et al., 1996; Warrick, 2003; Tracy, 2008)
for linear relative-permeability, (Forsyth, 1987; Efendiev and Hou,
2009) for quadratic relative-permeability and (Udell and Fitch,
1985; Lu et al., 2009) for cubic relative-permeability). This later
(i.e. cubic) corresponds to k = 1 in the Purcell model (Purcell,
1949; Li and Horne, 2006). Considering such special relative-perme-
ability functions may be seen as a limitation. However, we believe
that such special functions can be matched well enough to provide
useful engineering predictions. The exact solutions are obtained by
using a general similarity transformation. They describe the evolu-
tion in space and time of the water saturation in a vertical column
and they do not require any numerical implementation. The solu-
tions for horizontal flow (i.e. without gravity) are also presented.
Analytical expressions of the masses of water leaving a given depth
are derived for the three cases. The analytical expressions of masses
may give some insight about the effect of hydraulic soil functions
(i.e. relative-permeability and capillary pressure) on the length of
time that water remains available in the system. One of the pro-
posed exact solutions is used to compare with numerical solution
obtained from an arbitrary initial condition.

2. The mathematical model

The movement of the two incompressible fluids, water and air,
in a vertical porous column is governed by the phase equations of
the two fluids. The phase equation of each fluid is obtained by com-
bining the mass balance equation and the extended Darcy equation
for multiphase system. Under the assumption of low air density
and low air viscosity the movement of water is described by the
Richards’ equation
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where t is the time (T), z is the vertical coordinate directed down-
ward (L), / and k are the porosity (�) and the intrinsic permeability

(L2) of the porous material, krw, lw, Pw and Sw are the relative-
permeability (�), the viscosity (M/LT), the pressure (M/LT2) and
the saturation of water (�).

The relative-permeability krw and the capillary pressure Pc

which is defined as the difference between the air pressure Pa

and the water pressure Pw, are functions of the water saturation
Sw. In this paper we select power law functions as in (Honarpour
et al., 1986; Wu and Pan, 2003, 2005) in the form

krwðSwÞ ¼ Ck S�w
� �a

; ð2Þ

and

PcðSwÞ � Pa � Pw ¼ Cp S�w
� ��b

; ð3Þ

where Ck and Cp are constant coefficients, a and b are positive
constant exponents of the relative-permeability and the capillary
pressure functions, respectively, and S�w is the effective water
saturation defined by

S�w ¼
Sw � Swr

1� Swr
; ð4Þ

with Swr is the residual water saturation. We note that Sw ranges
from Swr to 1 while S�w ranges from 0 to 1.

Assuming that air is at constant pressure, say at atmospheric
pressure, therefore the gradient of the water pressure is the oppo-
site of the gradient of the capillary pressure. Substituting (2)–(4)
into (1) we get after some mathematical manipulations
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with D0 has dimension of diffusion coefficient (L2/T) and V0 has
dimension of velocity (L/T) defined by

D0 ¼
bkCkCp

/lwð1� SwrÞ
and V0 ¼

qwgkCk

/lwð1� SwrÞ
: ð6Þ

Eq. (5) is a nonlinear advection–diffusion equation. Diffusion is due
to capillary forces represented by D0 and advection is due to gravity
forces represented by V0. Note that both advection and diffusion
terms are generally nonlinear.

The diffusivity D S�w
� �

¼ D0 S�w
� �a�b�1 is a function of saturation.

For a � b � 1 < 0, it decreases with water saturation. Therefore,
the diffusivity tends to infinity for vanishing saturation. This
means that the saturation profile is smoothly vanishing at infinity.
For the other case a � b � 1 > 0, the diffusivity increases with
saturation and becomes negligible for small saturation values. Con-
trary to the previous case, the saturation profile vanishes at finite
depth. Thus, the saturation profile is characterized by a shock-type
moving front. We would like to mention that the first case (i.e.
a � b � 1 < 0) appears to be unrealistic from a physical standpoint
when modeling flow in the unsaturated zone. However, such situ-
ation may exist in other systems of two-phase flow like gas and oil.
For these systems, this case corresponds to circumstances where
the characteristic pore size of the porous medium is small and/or
the viscosity of oil is low. Moreover, this case may be important
for validating numerical solutions.

Wu and Pan (2003) solved analytically Eq. (5) without gravity
effects (i.e. V0 = 0) for the special case a = b + 1 in one, two and
three dimensions. In this case the equation is reduced to a linear
diffusion equation. Generally, when gravity forces are considered,
Eq. (5) is not linear anymore. Indeed, Eq. (5) is linear if and only
if a = b + 1 and a = 1 which yields b = 0 and then the capillary pres-
sure is constant. In this paper we disregard this case and we
assume that b = 1. Wu and Pan (2003) used this value of b in their
numerical applications.

In order to find analytical solution of (5), we consider a semi-
infinite porous column and we assume that a fixed amount of

M. Hayek / Journal of Hydrology 517 (2014) 668–676 669



Download	English	Version:

https://daneshyari.com/en/article/6413010

Download	Persian	Version:

https://daneshyari.com/article/6413010

Daneshyari.com

https://daneshyari.com/en/article/6413010
https://daneshyari.com/article/6413010
https://daneshyari.com/

