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In the study, the averaging technique of diffusion coefficients in the two-dimensional nonlinear diffusive
wave equation applied to the floodplain inundation is presented. As a method of solution, the splitting
technique and the modified finite element method with linear shape functions are used. On the stage
of spatial integration, it is often assumed that diffusion coefficient is constant over element and equal
to its average value. However, the numerical experiments indicate that in the case of the flow over the
dry floodplain with sudden changes in depths an inadequate averaging of these coefficients can lead to
a non-physical solution or even to its instability. In the paper, the averaging techniques for estimation
of diffusion coefficients were examined using the arithmetic, geometric, harmonic and the direction

dependent means. The numerical tests were carried out for the flows over initially dry floodplain with
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varied elevation of bottom. It was shown that the averaging method based on the arithmetic mean with
respect to the diffusion coefficients provides the satisfactory results in comparison to other techniques.

© 2014 Published by Elsevier B.V.

1. Introduction

Numerical simulation of floodplain inundation process is one of
the most important problems in hydrological practice. In order to
predict the propagation of flood wave over an initially dry area
the shallow water equations (SWE) are frequently used (Heniche
et al.,, 2000; Horritt, 2002; Horritt and Bates, 2001; Liang and
Borthwick, 2009). In many cases, information on the extent of
inundation can be also acquired using a simplified model in the
form of diffusive wave equation (Hsu et al., 2000; Moussa and
Bocquillon, 2009; Szymkiewicz and Gasiorowski, 2012). This equa-
tion obtained by neglecting of the inertial force in the SWE was
proposed by Hromadka and Yen (1986). For the two-dimensional
(2D) case the diffusive wave equation takes the following form:

OH 0 OH 0 OH
E*a@%) W(K@) =0 M

where x, y are space co-ordinates, t is the time, H is the water sur-
face elevation above the assumed datum, and K, K, are the coeffi-
cients of diffusion in x and y direction respectively.

* Tel.: +48 583472894.
E-mail address: gadar@pg.gda.pl

http://dx.doi.org/10.1016/j.jhydrol.2014.06.039
0022-1694/© 2014 Published by Elsevier B.V.

The coefficients Ky and K, are defined as:
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where h = H-Z is the flow depth, Z is the bottom elevation above the
assumed datum, and n is the Manning roughness coefficient.

The 2D nonlinear diffusive wave Eq. (1) is classified as a partial
differential equation of 2nd order of parabolic type, where both
coefficients of diffusion depend in a nonlinear manner on the water
depth h, bottom elevation Z, water level H as well as the derivatives
OH|0x and 0H/dy. The nonlinear character of diffusive wave equa-
tion causes complications in its numerical solution, in particular
for overland flow problems. For this reason Eq. (1) requires a choice
of adequate numerical methods.

A couple of numerical approaches have been proposed to solve
the 2D diffusive wave equation. For example, Hromadka and Yen
(1986), Han et al. (1998) and Lal (1998) used the finite difference
method (FDM) in the form of nodal domain integration method,
whereas Zhang et al. (2004) applied the FDM method with irregu-
lar triangle mesh. Di Giammarco et al. (1996) presented an alterna-
tive formulation for the mixed 1-2D overland flow using the
conservative volume finite element method (CVFE), and
Prestininzi, 2008 developed the finite volume method (FVM) in
combination with the storage cell scheme for dam-break induced
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Fig. 1. Rectangular mesh covering the solution domain.

flow. The diffusive wave equation has been also solved using the
modified Galerkin finite element method (FEM). This approach
has been successfully applied to the solution of 2D problem using
triangular elements (Szymkiewicz and Gasiorowski, 2012) as well
as to the solution of the one-dimensional diffusive equations
(Gasiorowski, 2013). A modification of the spatial integration pro-
cedure in FEM leads to a more general algorithm including a
weighting parameter. Due to this modification the resulting algo-
rithm allows to control the accuracy and stability of solution,
thereby it is possible to achieve a solution without numerical
oscillations.

An effective solution of the 2D diffusive wave equation has
been obtained using the time splitting technique such as the Alter-
nating Direction Explicit (ADE) method or the Alternating Direc-
tion Implicit (ADI) method (Lal, 1998). Apart from the time
splitting algorithms, we can also distinguish the approach based
on the dimensional splitting (Szymkiewicz, 1993; LeVeque,
2002). According to this method the splitting process is performed
with respect to the space independent variables. Consequently, in
each time step the 2D diffusive wave equation is solved as two
1D sub-problems for each direction separately (Gasiorowski,
2013). This procedure leads to a more effective algorithm of solu-
tion with tri-diagonal systems of algebraic equations. Moreover,
in order to simplify the discretization issues the solution domain
is represented by a rectangle containing the actual domain of inter-
est, which may be of irregular shape. The only restriction resulting
from the procedure is that considered domain should be large
enough to include the whole area to be wetted in the simulated
event.

All the above numerical methods (FEM, FDM and FVM) provide
an approximate solution of the diffusive wave equation in the
nodes of the mesh only. Regardless of the applied method, each
of them requires an adequate estimation of the diffusion coeffi-
cients referred to the area between adjacent nodes. The choice of
averaging method must be considered thoroughly, especially when
the overland flow problem is simulated. One of the most popular
approach for averaging of the diffusion coefficients is the arithme-
tic mean with respect to the water depth (Singh, 1996; Lal, 1998;
Szymkiewicz and Gasiorowski, 2012). It gives correct results for
typical overland flow simulation problems. However, numerical
experiments show that this kind of averaging provides the
unexpected effects in solution when the flow occurs on the dry
floodplain in the vicinity of obstacles. In such situations an inade-
quate approximation of the diffusion coefficients leads to an unsta-
ble or non-physical solution with water at rest even with non-zero
water surface slope. For this reason it is necessary to find other
alternative methods for averaging of the diffusion coefficients
while analyzing the floodplain inundation problems.

As one can notice the nonlinear diffusive wave Eq. (1) is very
similar to the Richards equation describing the flow in unsaturated
zone of the porous media (Weill et al., 2009; Lal, 1998). In the case
of the Richards equation the averaging of the water permeability

was studied by several authors (Haverkamp and Vauclin, 1979;
Zaidel and Russo, 1992; Miller and Williams, 1998; Belfort and
Lehmann, 2005; Szymkiewicz, 2009; Szymkiewicz and Hemling,
2011). There are various averaging techniques for hydraulic
conductivity and a comprehensive presentation focusing on the
solution of 1D Richards equation is given by Szymkiewicz (2012).
As it has been presented in the literature these averaging methods
can differ significantly in their predicted results, especially when
the solution contains a steep wetting front. For this reasons, it
seems to be justified to take into account some suggestions result-
ing from modeling of the flow in unsaturated media and to imple-
ment them for the considered diffusive wave equation describing
the overland flow.

The objective of this paper is the analysis of various averaging
techniques of the diffusion coefficients appearing in 2D nonlinear
diffusive wave equation. All further considerations are related to
the case when the governing equation is solved numerically using
the splitting technique and the modified FEM.

2. Splitting process for 2D diffusive wave equation

In order to ensure a more effective and flexible algorithm the 2D
diffusive wave Eq. (1) can be split with regard to the space inde-
pendent variables x and y (Gasiorowski, 2013). According to this
method in each time step the 2D problem is split and reduced to
the solution of two 1D subproblems describing separately the
propagation process in x and y direction respectively.

It is assumed that the considered domain has the form of
rectangle of dimension Ly x L, (Fig. 1) and it is covered by a mesh
given by intersection of two families of straight lines.

The first one is parallel to the x axis and the second one is
parallel to the y axis. The mesh constituted by M columns spaced
with Ax and N rows spaced with Ay contains N x M nodes as it
is shown in Fig. 1. According to the splitting method the solution
of Eq. (1) runs in two stages for each time step At. At the first stage
a set of 1D equations in x direction:
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corresponding to each row is integrated with the initial condition
H"(x, y, t)=H(x, y, t). This equation is solved for all rows i=1,
2,..., N. The solution H")(x, y, t + At) of Eq. (3) in the current time
step is used at the second stage as the initial condition H®)(x, y,
t)=H"(x, y, t+ At) for the solution of a set of 1D equations in y
direction:
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corresponding to each column. The integration of Eq. (4) is per-
formed for each columnj=1, 2,..., M and gives the final solution
at the next time level H(x, y, t + At) = H®X(x, y, t + At).

In the case of linear equations we can apply the superposition
principle. Consequently, the order of solution of Egs. (3) and (4)
is not important for the solution accuracy. However, for the non-
linear systems this property is not valid. Thus, if the splitting
method is applied to the non-linear equation then the splitting
error can be observed in its numerical solution. It depends on the
order of accuracy of the algorithms applied to compute subprob-
lems and it is connected with spatial flow orientation. For example,
in considered 2D diffusive equation when the flow is oriented
approximately along the x axis, starting computations with x and
next with y direction we can obtain a greater splitting error than
in the opposite case, i.e. starting with y and next x direction. The
splitting error has a numerical character and depends on the size
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