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SUMMARY

Spatial variations of future droughts across the Gunnison River Basin in CO, USA, are evaluated in this
study, using a recently developed probabilistic forecast model. The Standardized Runoff Index (SRI) is
employed to analyze drought status across the spatial extent of the basin. The runoff generated at each
spatial unit of the basin is estimated by a distributed-parameter and physically-based hydrologic model.
Using the historical runoff at each spatial unit, a statistical forecast model is developed within Bayesian
networks. The forecast model applies a family of multivariate distribution functions to forecast future
drought conditions given the drought status in the past. Given the runoff in the past (January-June),
the forecast model is applied in estimating the runoff across the basin in the forecast period (July-
December). The main advantage of the forecast model is its probabilistic features in analyzing future
droughts. It develops conditional probabilities of a given forecast variable, and returns the highest
probable forecast along with an assessment of the uncertainty around that value. Bayesian networks
can also estimate the probability of future droughts with different severities, given the drought status
of the predictor period. Moreover, the model can be used to generate maps showing the runoff variation
over the basin with the particular chance of occurrence in the future. Our results indicate that the statis-
tical method applied in this study is a useful procedure in probabilistic forecast of future droughts given
the spatio-temporal characteristics of droughts in the past. The techniques presented in this manuscript
are suitable for probabilistic drought forecasting and have potential to improve drought characterization

in different applications.

© 2014 Published by Elsevier B.V.

1. Introduction

The National Oceanic and Atmospheric Administration’s (NOAA,
2013) National Climate Data Center reported the year 2012 as the
warmest year on record for the United States. Over the entire year
of 2012, average temperatures of the contiguous United States
were 3.2 °F above that of the 20th century. According to the U.S.
Drought Monitor, more than 70% of the contiguous United States
experienced some level of dry spells being classified from
abnormal to exceptional droughts in 2012. The droughts of 2012
extended to the next year and approximately 58% of the contigu-
ous United States was under drought conditions as of January 29,
2013. Many major rivers in the Western U.S., including the
Colorado and the Rio Grande, had below average streamflow in
the spring and summer of 2013. The ongoing droughts in the North
America and many other regions across the globe are referred to
the climate change and global warming effects (Trenberth, 2011;
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Peterson et al., 2012) and the frequency of future droughts is
expected to be increasing, rather than decreasing (Sheffield and
Wood, 2008; Dai, 2011). Consequently, a reliable hydrologic fore-
cast for a region has a significant role in the efficient planning of
available water resources.

Droughts have strong impacts on the water supply and quality;
society and public health; crop production and agriculture; plants,
wild fires, and living environments. A variety of studies in the past
decades have examined the different aspects of drought events,
such as developing different drought indicators (Niemeyer, 2008;
Mishra and Singh, 2010), monitoring and characterizing the
droughts (Andreadis and Lettenmaier, 2006; Shukla et al., 2011;
Shiau, 2006; Dupuis, 2007), climate change impacts on future
droughts (Ghosh and Mujumdar, 2007; Sheffield and Wood,
2008; Burke et al., 2010; Moradkhani et al., 2010; Risley et al.,
2011; Madadgar and Moradkhani, 2011), and developing early
warning systems to survive in drought conditions (Huang and
Chou, 2008). There are also a number of studies focused on drought
forecasting and estimating the likely drought conditions in the fu-
ture. In an earlier study, Karl et al. (1987) evaluated the probability
of receiving a sufficient amount of precipitation to recover from an
ongoing drought over a particular period of time. They rewrote the
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Palmer Drought Severity Index (PDSI; Palmer, 1965) and utilized
the unconditional gamma distribution to obtain the probabilities
of future droughts. However, this is disputed for ignoring the
dependency and auto-correlation in a precipitation record. Since
then, several other methods have been developed and tested in
drought forecasting such as Markov Chain model (Lohani and
Loganathan, 1997; Steinemann, 2003), stochastic renewal models
(Kendall and Dracup, 1992; Loaiciga and Leipnik, 1996), stochastic
autoregressive models (Mishra and Desai, 2005), and artificial neu-
ral networks (Mishra and Desai, 2006; Barros and Bowden, 2008).
Cancelliere et al. (2007) discussed the validity of Markov Chain
model for making significant errors in transition probabilities of
the Standardized Precipitation Index (SPI; McKee et al., 1993)
and then derived the transition probability matrix by an analytical
study on the statistics underlying the SPI equations. However,
Madadgar and Moradkhani (2013) recently argued, in an analytical
framework, that the assumption of independent and normally dis-
tributed aggregated precipitation volumes is not always true, espe-
cially for other hydrologic variables such as runoff and streamflow.
They also discussed that for frequency analysis of different drought
states, the intense process of obtaining the transition probability
matrix from the index equation could be avoided by using multi-
variate modeling based on copula functions (Joe, 1997). In several
other studies, the climate forecast products of NOAA Climate
Prediction Center (CPC) are used for developing probabilistic
drought forecasts (Carbone and Dow, 2005; Hwang and Carbone,
2009). However, Steinemann (2006) discussed the poor interpreta-
tion of forecast probability and uncertainty information supported
by CPC forecast products in real applications.

This study extends the application of the recently developed
model in drought forecasting by Madadgar and Moradkhani
(2013). In the previous application, the forecast model predicted
the future droughts of the Gunnison River Basin (GRB) in Colorado,
USA, using the flow volume at the basin outlet. The promising re-
sults of that study have encouraged the authors to apply their fore-
cast model in estimating the spatial variation of future droughts
using the runoff volume at different grid cells across the basin.
Copulas (Joe, 1997; Nelsen, 1999), as the main core of the proposed
forecast model, are multivariate distribution functions that join the
marginal distributions of the variables with some level of depen-
dency and correlation. According to the existent correlations
among the hydrologic variables like runoff, streamflow, groundwa-
ter level, and many other variables, the copula functions have been
examined in different hydrologic applications over the past few
years (e.g. Favre et al., 2004; Bardossy, 2006; Shiau, 2006; Dupuis,
2007; Zhang and Singh, 2007; Salvadori and De Michele, 2010; Kao
and Govindaraju, 2008, 2010; Madadgar and Moradkhani, 2011;
Madadgar et al., 2012). In drought applications, copulas have been
used to characterize the future droughts in terms of estimating the
return period of droughts’ severity, intensity, and duration, (Shiau,
2006; Dupuis, 2007; Kao and Govindaraju, 2010; Wong et al., 2010;
Madadgar and Moradkhani, 2011). However, in a recent study by
Madadgar and Moradkhani (2013), a new application of copula
functions in drought forecasting was examined, where instead of
analyzing the drought characteristics; they studied the occurrence
probability of seasonal droughts regarding streamflow observa-
tions. They defined the conditional probability of streamflow via
Bayesian networks. According to the correlations among the
streamflow of consecutive seasons, the conditional probabilities
of seasonal droughts were analyzed using the copula functions
adopted in a Bayesian framework. This study aims at extending
the application of the proposed copula-based method to estimate
the spatial variation of future drought probabilities across the
GRB. For this purpose, the runoff generated across the basin is used
to evaluate the spatial variation of droughts; while in the previous

study, the streamflow observations at a particular point were used
for drought forecasting.

The paper is organized as follows. Section 2 explains the
drought index to evaluate droughts based on the runoff volume
at each spatial unit across the basin. Section 3 describes the hydro-
logic modeling of GRB and analyzes the historical droughts of the
basin. Section 4 elaborates on the probabilistic forecast methodol-
ogy employed in this study, and is followed by a discussion on the
required analyses to apply the forecast model (Section 5). Section 6
demonstrates some forecast products for the study basin and dis-
cusses the results. Finally, Section 7 summarizes the major remarks
of the study.

2. Standardized Runoff Index (SRI)

Standardized Runoff Index (SRI; Shukla and Wood, 2008) is
used to evaluate the spatial variation of the hydrologic drought
across the study area. As with all Standardized Indices (SI), the
SRI of each spatial unit reflects the anomalies of surface runoff
from its average value generated in the same unit. Mathematically,
SRI is defined as the standardized normal variable of the accumu-
lated surface runoff over a specific time period:
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where uj, ., is the probability of the total runoff volume at the spa-
tial unit s in year yr over k months starting from month m; F, is the
marginal distribution of accumulated runoff (X], ,,); and y;, is the
monthly runoff of the spatial unit s. Therefore, the SRI calculation
starts with fitting an appropriate marginal distribution to the total
runoff volume over k months and computing the standardized nor-
mal variable for each aggregated runoff volume. According to Eq.
(1), separate marginal distributions should be fitted to the accumu-
lated runoff beginning from different months to obtain the SRI
variation over time for each spatial unit. As explained by Madadgar
and Moradkhani (2013), Eq. (1) can preserve the natural periodicity
(seasonality) of surface runoff, where the runoff variation among
the low-flow and high-flow seasons is appropriately reflected in
the definition of SRI.

Once the SRI is estimated for each spatial unit, the drought sta-
tus of each unit can be determined by the U.S. Drought Monitor
classification for the standardized drought indices (Table 1). Using
this classification, one out of five drought categories can be recog-
nized for a region at any time. The SRl = —0.5 separates the dry
periods from the wet periods, while the variation in water
availability during a time horizon results in a dynamic transition
either between dry and wet spells, or among various drought
categories.

Table 1
Drought classification by the U.S. Drought Monitor (http://droughtmonitor.unl.edu/)
for the Standardized Indices (SI).

Drought category Drought severity SI value

DO Abnormally dry —0.5 to —0.7
D1 Moderate drought -0.8to —1.2
D2 Severe drought -13to -1.5
D3 Extreme drought -1.6to -1.9
D4 Exceptional drought —2.0 or less



http://droughtmonitor.unl.edu/

Download English Version:

https://daneshyari.com/en/article/6413106

Download Persian Version:

https://daneshyari.com/article/6413106

Daneshyari.com


https://daneshyari.com/en/article/6413106
https://daneshyari.com/article/6413106
https://daneshyari.com

