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s u m m a r y

Large scale rainfall models are needed for collective risk estimation in flood insurance, infrastructure
networks and water resource management applications. There is a lack of models which can provide
simulations over large river basins (potentially multi-national) at appropriate spatial resolution (e.g.,
5–25 km) that preserve both the local properties of rainfall (i.e., marginal distributions and temporal cor-
relation) and the spatial structure of the field (i.e., the spatial dependence structure). In this study we
describe a methodology which merges meta-Gaussian random fields and generalized additive models
to simulate realistic rainfall fields at daily time scale over large areas. Unlike other techniques previously
proposed in the literature, the suggested approach does not split the rainfall occurrence and intensity
processes and resorts to a unique discrete–continuous distribution to reproduce the local properties of
rainfall. This choice allows the use of a unique meta-Gaussian spatio-temporal random field substrate
that is devised to reproduce the spatial properties and the short term temporal characteristics of the
observed precipitation. The model is calibrated and tested on a 25 km gridded daily rainfall data set cov-
ering the 817000 km2 of the Danube basin. Standard and ad hoc diagnostics highlight the overall good
performance over the whole range of rainfall values at multiple scales of spatio-temporal aggregation
with particular attention to extreme values. Moreover, the modular structure of the model allows for
refinements, adaptation to different areas and the introduction of exogenous forcing variables, thus
making it a valuable tool for classical hydrologic analyses as well as for new challenges of network
and reinsurance risk assessment over extensive areas.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Dealing with large geographic areas, the modeling of the spatio-
temporal evolution of rainfall is a challenging task that however
must be tackled to provide realistic scenarios to be used as an
essential input of water resource or flood risk assessment analyses.
Over large areas, extreme events cannot be simply defined as the
occurrence of an observation or a cluster of high values over a spa-
tially coherent geographic zone, but more realistically as a set of
rainfall fields evolving in time (generally driven by large scale cli-
mate patterns). The combination of local rainfall intensities, spatial
extension and temporal persistence creates rainfall scenarios that
can overload the basin system resulting in critical conditions of
saturation and surface runoff. For instance, persistent and spatially

extended rainfall events with medium intensity can be more dan-
gerous than short and highly intensive events, when the phenom-
enon affects wet soils already saturated by previous events.
Modeling these conditions therefore plays a key role in a well-de-
vised risk assessment procedure and requires moving from a static
point of view (rainfall frequency analysis) to a dynamic perspective
(stochastic modeling).

A large number of spatio-temporal rainfall models has been
suggested in the literature. Overviews were provided by Wilks
and Wilby (1999), Srikanthan and McMahon (2001), Mehrotra
et al. (2006) and more recently, by Baigorria and Jones (2010),
Maraun et al. (2010) and Haberlandt et al. (2011). Even though
several hybrid versions are available, it is possible to attempt a
rather general classification based on the underling backbone
technique of each method. Following Haberlandt et al. (2011), we
can distinguish between:

1. Alternating renewal processes.
2. Time series models.
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3. Markov chain models.
4. Linear parametric models.
5. Point processes.
6. Disaggregation models.
7. Resampling techniques.

Each approach exhibits both suitable properties and shortcom-
ings. We give a brief description of each method highlighting the
aspects that are potentially attractive to model rainfall over large
areas and thus the reasons that have led to the approach adopted
in this study.

The alternating renewal processes separate the precipitation
process into alternating wet and dry spells plus an internal struc-
ture of the rainfall pattern. The process is described by four random
variables, namely dry spell duration, wet spell duration, wet spell
amount and wet spell intensity. The approach is devised for time
series modeling and can be extended to a multisite/gridded set-
up via optimization techniques. Dependence of the model param-
eters on exogenous variables can be introduced. The method is
suitable for fine scale temporal resolution by introducing ‘‘inter-
nal’’ rainfall patterns within each storm event, whereas the spatial
domain might depend on the computational time required by the
optimization/resampling procedures (see e.g., Haberlandt et al.,
2008, 2011, and references therein).

Time series models such as Markov chain models, generalized
linear models (GLM; McCullagh and Nelder, 1989), generalized
additive models (GAM; Hastie and Tibshirani, 1990), linear para-
metric models (ARMA and their extensions; Hipel and McLeod,
1994) are widely used to simulate hydrological variables. A well
established theoretical framework allows accounting for exoge-
nous variables, temporal dependence and wet/dry conditions via
a suitable parameterization. First or higher order Markov chains
are used to model the alternation of rainfall states (wet/dry states
in a two-states set-up). Multisite/gridded extensions can be built
via latent spatial processes with uniform marginals. This type of
models is commonly applied to daily data (see e.g., Wilks, 1998;
Yang et al., 2005; Serinaldi, 2009; Kleiber et al., 2012). Examples
of rainfall simulation have been provided for grids spacing
� 20 km over areas up to � 700000 km2 (Kleiber et al., 2012).

The models based on point processes describe rainfall events as
an arrival process of rectangular pulses. The superposition of the
cells generates clusters that define the rainfall events. Multisite
extensions are available via two-dimensional rain cells and spatial
point processes. Dependence between climate and catchment
properties and model parameters can be introduced. This class of
models is devised for sub-daily temporal resolution (1 h) and has
been applied up to nation-wide scales (e.g., UK) via domain parti-
tioning (required because these models are usually stationary in
occurrence in space). Data at different time scales are required to
calibrate these models (e.g., Cowpertwait, 2006; Burton et al.,
2010).

Disaggregation models are devised for space–time disaggrega-
tion of rainfall series according to the scaling properties of the rain-
fall. Fine scale high quality data are required to fit the models.
Dependence between climate and catchment properties and model
parameters can be introduced; however, in these cases, the models
are no longer properly scaling/fractal/multifractal. The spatial do-
main depends on the range of scales in which the scaling proper-
ties reasonably hold (see e.g., Schertzer and Lovejoy, 1987; Gupta
and Waymire, 1993; Over and Gupta, 1996; Deidda, 2000).

Resampling models do not model rainfall but sample the ob-
served values according to suitable rules that preserve the spa-
tio-temporal statistical properties of the rainfall measurements.
Dependence on climate and catchment properties can be intro-
duced by modifying the resampling rules according to a suitable
data stratification. The approach is data-driven and

non-parametric, thus avoiding any model misspecification. The
method does not allow generation of values more extreme than
those observed and can be time expensive for large areas and fine
(sub-daily) time scales (see e.g., Brandsma and Buishand, 1998;
Buishand and Brandsma, 2001; Apipattanavis et al., 2007;
Mehrotra and Sharma, 2009; Mezghani and Hingray, 2009).

Based on this overview, some models are less suitable than oth-
ers to describe and simulate rainfall fields over large areas. For
example, disaggregation models need extensive good quality
rainfall information at fine time scale, which is rarely available.
Resampling procedures do not always perform satisfactorily if the
focus is on extreme events. Models based on point processes have
a well defined mathematical framework; however their extension
and incorporation of exogenous variables is not always easy;
moreover, even in this case, good quality data at multiple time
scales required for the model calibration are rarely available for
large areas. In addition, a rainfall model for large areas must fulfill
some requirements, such as ease of implementation, interpretation
and extension (by incorporating exogenous variables), a reasonable
simulation speed, and adaptability. The latter property refers to the
possibility of tuning specific components to tailor the model
according to specific areas, climate regions, and also to improve
the performance in terms of specific aspects that might be of
interest for design purposes.

Based on the above remarks, we opted for a parametric
approach that falls into the class of the time series models for daily
data. In particular, we combine Markov chain models with GAM
components for marginals and spatio-temporal meta-Gaussian
random fields. The modeling framework is described in Section 2.
Section 3 introduces the data sets used in the case study (rainfall
data and covariates), whereas the model set-up is presented in
Section 4. The model performance is discussed in Section 5 and
concluding remarks are reported in Section 6.

2. Model structure

As is mentioned in the introduction, the problem of simulating
rainfall over large areas is tackled here by adopting a parametric
method for daily rainfall data. The choice of the time scale is dictated
by the availability of rainfall data and climate covariates for large
areas. Indeed, good quality gauge and gridded daily rainfall data sets
are provided by several institutions worldwide an can be used for
the model calibration. Moreover, the aim is to develop a tool useful
for risk analysis at country scale (at least), meaning that fine time
scale details may be less important than an overall picture of the
rainfall phenomenon. Daily rainfall data are also a suitable input
for rainfall–runoff models for large basins. On the other hand, using
methods relying on fine scale or multiple scale data sets can be
impractical because of data requirement and the general low flexi-
bility and adaptability of the corresponding modeling frameworks.

Therefore, the modeling approach proposed in this study be-
longs to the class of models proposed by Wilks (1998) and
Chandler and Wheater (2002) (see also Yang et al., 2005; Segond
et al., 2006, 2007) and further developed by Baigorria and Jones
(2010) and Kleiber et al. (2012). The basic idea behind these mod-
els is to split at-site occurrence process (the transition between
wet and dry days) and rainfall amount process (positive rainfall
values in wet days). Both processes are therefore modeled by suit-
able GLM/GAM that describe the at-site marginal distribution of
the rainfall process. The spatial correlation is introduced in the
simulation stage by hidden meta-Gaussian processes which enable
the simulation of spatially correlated random numbers with uni-
form marginal distributions. These correlated random numbers
are then plugged in the GLM/GAM expressions and transformed
into values that preserve the spatial correlation and follow the
at-site rainfall discrete–continuous marginal distributions
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