Journal of Hydrology 512 (2014) 442-446

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Technical Note Moisture-pressure dynamics above an oscillating water table

Nick Cartwright*

Griffith School of Engineering, Gold Coast Campus, Griffith University, Queensland 4222, Australia

ARTICLE INFO

Article history: Received 11 November 2013 Received in revised form 6 March 2014 Accepted 7 March 2014 Available online 19 March 2014 This manuscript was handled by Corrado Corradini, Editor-in-Chief, with the assistance of Fritz Stauffer, Associate Editor

Keywords: Oscillating water table Unsaturated flow Hysteresis

SUMMARY

This paper presents a sand column dataset on the soil moisture-pressure dynamics above a simple harmonic oscillating water table. A total of 19 experiments were conducted in which all experimental parameters were held constant except for the oscillation period which ranged between 12.25 h down to 10 s. The data show clear evidence of hysteresis at longer oscillation periods where the unsaturated zone has sufficient time to adjust to the water table motion. At shorter periods the contrary exists with the extent of moisture-pressure variations greatly reduced and, for periods less than 15 min, the dynamics become non-hysteretic. The high frequency moisture-pressure loops, although non-hysteretic, do not follow the (non-hysteretic) static equilibrium wetting or drying curves but are consistent with the scanning loops generated by a commonly adopted hysteresis algorithm for numerical solution of the Richards (1931) equation. Thus, the data provides new physical insights behind the need to include hysteresis effects when simulating high frequency water table motions as found by previous researchers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The influence of the unsaturated zone on periodic water table dynamics is widely recognised in the literature (e.g. Barry et al., 1996; Cartwright et al., 2005, 2009; Lehman et al., 1998; Li et al., 1997; Nielsen and Perrochet, 2000a,b; Stauffer and Kinzelbach, 2001; Werner and Lockington, 2003). This is particularly the case with high frequency water table fluctuations which in turn have been linked to the mobility of sediments on beaches (e.g. Elfrink and Baldock, 2002) and also play a role in modifying the patterns of salt-water intrusion into coastal aquifers (Xin et al., 2010). This paper presents new sand column experiments on the moisture-pressure dynamics above a simple harmonic oscillating water table which reveal new insights into the influence of hysteresis on the response of the unsaturated zone.

Lehman et al. (1998) conducted sand column experiments in which periodic sawtooth shaped forcing was applied to the base of the sand where the pressure head oscillated between +1 cm and -24 cm relative to the base of the column. The moisture-pressure response was then observed in the sand for two test cases with varying oscillation periods: 180 min and 33 min. Their data illustrated a strong asymmetry in the moisture content response to the symmetric forcing condition due to hysteresis effects which was confirmed by the need to include the hysteresis theory of

Mualem (1984) in their numerical solution of the Richards (1931) equation in order to reproduce the data.

Stauffer and Kinzelbach (2001) also conducted sand column experiments using periodic forcing conditions at the base. However, due to slow response times of the tensiometers used, they were unable to closely examine the moisture pressure dynamics and instead focussed on the moisture dynamics alone which were measured using the gamma probe technique. They also confirmed the need to include hysteresis effects in the solution of the Richards (1931) equation in order to reproduce their moisture data.

The present paper extends this previous research by presenting data on the moisture-pressure dynamics above a periodically oscillating water table over a wide range of frequencies. The new data consist of co-located moisture and pressure measurements which facilitate the opportunity to examine the moisture-pressure scanning loops above the water table which provides important new physical insights into unsaturated groundwater dynamics with particular relevance to ocean-aquifer coupling.

2. Sand column experiments

The 1.6 m high sand column used in the present experiments is illustrated in Fig. 1 and is the same as described in detail by Nielsen and Perrochet (2000a,b) and Cartwright et al. (2005, 2009). At the base of the sand column was a porous plate separating the sand above from a clear water cell below which was connected to an external overflow reservoir which delivered a simple harmonic

Fig. 1. Schematic illustration of the sand column and monitoring locations.

driving head ($h_0 = d + A\cos\omega t$) at the base of the sand. A total of 19 experiments were conducted in which the forcing parameters were fixed with a mean driving head level of d = 0.9 m, a driving head amplitude of A = 0.16 m. The only variable was the oscillation period (T) that varied between from 12.25 h to 10 s.

The clear water driving head pressure at the base of the sand and the pressure in the saturated zone ($h^*(z = 0.5 \text{ m})$) were measured using transducers connected to stainless steel piezometers extending horizontally into the column. This saturated zone pressure measurements was used to compute the water table elevation following Nielsen and Perrochet (2000a,b),

$$h(t) = \frac{zh_0(t)}{z + h_0(t) - h^*(z, t)}$$
(1)

At two locations in the unsaturated zone (z = 1.2 m and 1.4 m), the instantaneous moisture-pressure dynamics were measured by co-locating a UMS-T5 tensiometer and an MP406 standing wave type moisture content probe. The sediment was fine grained quartz sand whose hydraulic properties are provided in Table 1.

It is noted that the experimental setup was such that any influence of truncation of the capillary fringe due to the presence of the

Table 1Summary of experimental parameters.^a

<i>d</i> , m	<i>A</i> , m	<i>K</i> , m/s	θ_s	θ_r	α^d , m ⁻¹	β	ζ
0.9	0.16	$\textbf{2.00}\times \textbf{10}^{-4}$	0.355	0.03	2.3	10	1.7

^a *d* and *A* are the mean and amplitude of the driving head. *K* is the saturated hydraulic conductivity (after Cartwright et al., 2009). θ_s and θ_r are the saturated and residual moisture contents where θ_s was taken to be the maximum reproducible value of θ for the *T* = 12.25 h test data. α^d and β are the best fit *van Genuchten* parameters for the first drying curve (after Nielsen and Perrochet, 2000a,b). $\zeta = \alpha^{w/} \alpha^d$ is the adopted hysteresis ratio after Kool and Parker (1987).

sand surface on the water table dynamics was negligible. Cartwright et al. (2004) demonstrated using a similar sand column setup that truncation effects became significant for $z_s \le h_{max} + 0.5H_{\psi}$ Adopting the worst case scenario for the present experiments by assuming $h_{max} + 0.5H_{\psi} = d + A + 0.5H_{\psi} = 1.26$ m then, with $z_s = 1.6$ m, any truncation effects did not influence the data.

For each oscillation period the system was allowed to run until a steady oscillatory state was reached as determined by the stabilisation of harmonic parameters (amplitudes and phases) in consecutive oscillation periods. The ensuing analysis and discussions in this paper are based on the final steady oscillatory state.

3. Results and discussion

Fig. 2 presents the observed moisture-pressure dynamics for 12 experiments with oscillation periods ranging from T = 12.52 h to T = 75 s. For comparison the static wetting and drying curves based on the best-fit van Genuchten (1980) parameters provided in Table 1 are also shown. For shorter oscillation periods, there was no dynamic response of the moisture and pressure and thus data are not presented.

3.1. Experimental data

The data shown in Fig. 2 indicate a strong dependence of the moisture-pressure dynamics on the oscillation frequency. At the longest period of 12.25 h the dynamic loop at z = 1.2 m is seen to closely follow the static drying curve before disengaging for the wetting phase and ultimately joining the wetting curve prior to recommencing the drying phase. This is because, at low frequencies, there is sufficient time for the partially saturated zone to adjust to the slowly varying water table and an equilibrium balance between the moisture distribution and the water table is approached, especially at locations closer to the water table. At z = 1.4 m the nature of the loop is somewhat compressed with only a small difference in the wetting and drying paths.

As the oscillation period decreases distinct changes to the moisture-pressure loops are apparent. Firstly, the extent of moisturepressure loops decreases as the period decreases because the damping of the water table increases with oscillation frequency ($A_{wt}/A_0 = 0.98$ for T = 12.25 h and $A_{wt}/A_0 = 0.44$ for T = 75 s, see also Cartwright et al. (2005)) in addition to the fact that there is relatively less time for the unsaturated zone to respond to the water table oscillations. Second, the hysteresis that is evident at longer periods gradually diminishes until, for $T \le 15$ min, hysteresis is no longer apparent.

It is noted that the observed non-hysteretic scanning loops are distinctly different to the static equilibrium curves. This observation is consistent with previous modelling work which demonstrated the need to include hysteresis effects in numerical solutions of the Richards (1931) equation to match experimental data on high frequency water table motions (e.g. Lehman et al., 1998; Stauffer and Kinzelbach, 2001; Werner and Lockington, 2003). That is, even though the scanning loops themselves are observed to be non-hysteretic for high frequency oscillations, the deviation of the scanning loops from the static wetting and drying curves can only be captured in the model using a hysteresis scanning loop algorithm (e.g. Scott et al., 1983). This will be confirmed further in Section 3.2.

Also shown in Fig. 2, is a "best-fit" non-hysteretic van Genuchten (1980) curve using $\beta = 3$ which follows on from the modelling results of Cartwright et al. (2005) who demonstrated that, whilst using the first drying curve value of $\beta = 10$ in a non-hysteretic Richards (1931) equation model was unable to predict their sand column data, curiously a non-hysteretic $\beta = 3$ curve could. The data Download English Version:

https://daneshyari.com/en/article/6413153

Download Persian Version:

https://daneshyari.com/article/6413153

Daneshyari.com