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s u m m a r y

This study presents a semi-analytical solution for steady groundwater flow in trapezoidal-shaped aqui-
fers in response to an areal diffusive recharge. The aquifer is homogeneous, anisotropic and interacts with
four surrounding streams of constant-head. Flow field in this laterally bounded aquifer-system is effi-
ciently constructed by means of variational calculus. This is accomplished by minimizing a properly
defined penalty function for the associated boundary value problem. Simple yet demonstrative scenarios
are defined to investigate anisotropy effects on the water table variation. Qualitative examination of the
resulting equipotential contour maps and velocity vector field illustrates the validity of the method, espe-
cially in the vicinity of boundary lines. Extension to the case of triangular-shaped aquifer with or without
an impervious boundary line is also demonstrated through a hypothetical example problem. The present
solution benefits from an extremely simple mathematical expression and exhibits strictly close agree-
ment with the numerical results obtained from Modflow. Overall, the solution may be used to conduct
sensitivity analysis on various hydrogeological parameters that affect water table variation in aquifers
defined in trapezoidal or triangular-shaped domains.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

As an important component of never-ending hydrologic cycle,
the infiltrating precipitation eventually rehabilitates aquifer sys-
tems through the diffusive recharge. This often occurs over large
spatial scales with the recharge rates controlled by weather, soil
properties, and land use (Healy, 2010). The recharge can be consid-
ered as an external forcing for the waterbudget models.

Given their advantages, several mathematical models have been
developed for groundwater recharge problems. These may offer
preliminary insights regarding engineering and management deci-
sions. In particular, groundwater models relying on analytical solu-
tions appear to be very useful, thanks to their ease of
implementation while providing valuable insights. Besides, the
analytical approach is well suited in verifying more comprehensive
numerical schemes.

Transient-state groundwater flow can be well described by
Boussinesq equation under Dupuit’s assumption of hydrostatic
pressure distribution. However, the strong nonlinearity of the
equation often precludes obtaining an analytical solution, except

for limited number of cases (Polubarinova-Kochina, 1962; Serrano,
1995). Therefore, it is common practice to linearize the Boussinesq
equation in order to attain an acceptable solution for the problem
(Rai et al., 2006; Liang and Zhang, 2012a). On this basis, the max-
imum rise or decline of the water table should remain small com-
pared to the initial water table height (Teloglou and Bansal, 2012).

There are various analytical studies dealing with groundwater
recharge in the framework of linearized Boussinesq equation.
These include, but not limited to, localized recharge from overlying
basins (Rai and Manglik, 1999; Manglik et al., 2004) and diffusive
recharge in 1D configuration (Anderson and Evans, 2007; Liang
and Zhang, 2012b). Groundwater models combining recharge ba-
sins with multiple injection and/or extraction wells can also be
found, for example in the work of Chang and Yeh (2007) and Rai
and Manglik (2012). Conventionally, the solution strategy relies
on Laplace transform for 1D (Hernandez and Uddameri, 2013)
and Fourier sine/cosine transform for 2D applications (Rai et al.,
2006; Manglik et al., 2013). Also, transient flow field in the
wedge-shaped aquifers can be modeled by successively applying
the finite sine and Hankel transforms (Yeh and Chang, 2006; Yeh
et al., 2008).

Steady-state groundwater flow condition may be regarded as
asymptotic convergence of the transient response in the limit
when time approaches infinity. Introducing the concept of mean
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action time, Simpson et al. (2013) evaluated a finite estimate of the
time span required for a transient flow problem to attain efficiently
the steady state. They considered recharge and discharge processes
and confirmed their theoretical predictions with relevant labora-
tory-scale experiments. Under steady-state condition, Boussinesq
equation loses the associated time-dependent character,
simplifying to Poisson equation for 2D groundwater movement
in homogeneous isotropic aquifers. The latter requires much sim-
pler mathematical treatment compared to that of transient
groundwater flow models. Some mathematically simple but useful
solutions of Poisson equation are reported by Fitts (2013).

In common hydrogeological settings, the aquifer may be
bounded laterally by streams or impermeable formations along
one or more of its sides. Most of the analytical studies reported
in the literature, however, assume semi-infinite, rectangular or
wedge-shaped domains to represent laterally bounded aquifers.
Difficulties arise when configuration of aquifer boundaries leads
to geometries different from those mentioned above. This is the
case in various regions of the world. The Mekong and Red River
deltas are typical examples of triangular-shaped aquifers as re-
ported by Asadi-Aghbolaghi and Seyyedian (2010) and references
therein. Different aquifer geometries could be characterized
through the intersection of streams in a multiple river basin. As
an example, the intersection of Karun and Bahmanshir rivers in
Khuzestan plain delineates a region with roughly trapezoidal
boundary (enclosed by dashed line in Fig. 1).

Apart from those devoted to wedge-shaped aquifers, there are
few analytical studies addressing flow field in non-rectangular
aquifers (Asadi-Aghbolaghi and Seyyedian, 2010; Mahdavi and
Seyyedian, 2013). This may be attributed to inadequacy of
conventional solution techniques in dealing with complex aquifer
geometries.

The present study is aimed at obtaining a semi-analytical solu-
tion for steady-state groundwater recharge in trapezoidal-shaped
aquifers — an idealization of what indicated in Fig. 1. The aquifer
is assumed to be homogeneous but anisotropic and it is sur-
rounded by four constant-head streams. To the best of author’s
knowledge, no analytical or even semi-analytical solution exists
for the problem under consideration. In accordance with the well
known Kantorovich method, an admissible solution containing
two unknown functions is considered. A variational framework is
then constructed whereby the two functions are determined by
minimizing an appropriate penalty function. This leads to a pair
of coupled Euler–Lagrange ordinary differential equations (ODEs).
The concept of operational calculus (Smirnov, 1964) is effectively
utilized to uncouple the equations. Finally, hypothetical examples
demonstrating the validity of the solution technique are presented.
The model predictions are in strictly close agreement with those of
Modflow simulation for both isotropic and anisotropic test cases.

2. Mathematical model

2.1. Governing equation and associated boundary conditions

This study focuses on mathematical description of steady
groundwater flow in trapezoidal-shaped aquifers subject to areal
diffusive recharge. Few simplifying assumptions are made in order
to arrive at a reasonable mathematical model for the phenomenon.
These are (i) the groundwater flows horizontally in a fully satu-
rated porous media; (ii) the unconfined aquifer is homogeneous
but anisotropic with respect to horizontal hydraulic conductivity;
(iii) the aquifer is underlain by a horizontal impervious bed and re-
ceives an areal recharge of constant rate; (iv) the streams adjacent
to aquifer are considered to be constant-head, fully penetrating
and in prefect hydraulic connection with the aquifer; and (v) the
coordinate axes are oriented along the principal directions of
anisotropy. Under these circumstances, the spatial distribution of
water table height is governed by:

@2H
@x2 þ w

@2H
@y2 ¼ �

2R0

Kx
ð1Þ

where H ¼ h2 � h2
0 [L2], h [L] is the water table height at the position

(x, y), R0 [L/T] is the constant rate of recharge, w = Ky/Kx [�] is the
anisotropy factor and Kx, Ky [L/T] are the hydraulic conductivities
in x- and y-direction, respectively, which are considered to be con-
stant. It is assumed that the stream–aquifer system preserves an
initial equilibrium state at height h0 [L], which is equal to the water
depth in the surrounding streams. Obviously, Eq. (1) reduces to
Poisson equation for the case of isotropic aquifer.

The geometry of aquifer system is schematically depicted in
Fig. 2. The parameters a [L], b [L], m1 [�] and m2 [�] delineate
the aquifer domain X in the Cartesian coordinate system as
X ¼ fðx; yÞ ðx; yÞ 2j ða 6 x 6 b;�m1x 6 y 6 m2xÞg. The constant-head
streams flowing adjacent to the aquifer serve as boundary of the
flow domain. Mathematically speaking, these streams are included
by specifying zero boundary values for the parameter H along de-
sired border. This reflects zero drawdown at the stream site. A
steady downward recharge causes groundwater to move in the
horizontal plane.

2.2. Variational formulation of the problem

The geometry of aquifer renders conventional solution
techniques powerless in dealing with intended boundary-value
problem. To overcome this difficulty, the variational approach
becomes more effective in dealing with domains confined by irreg-
ular boundaries. First, the associated penalty function is formed as:

Fig. 1. Map of region bounded by Karun and Bahmanshir rivers in the vicinity of
Iran–Iraq border. The dashed line depicts roughly a trapezoidal-shaped aquifer.
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