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s u m m a r y

In modeling hydrological phenomena, statistical distributions are commonly used as frequency models to
fit hydrological data. The 2-parameter Kappa (KAP) distribution has been proposed to analyze precipita-
tion, wind speed and stream-flow data. Estimates of distribution quantiles are important risk measures of
the frequency of occurrence of extreme hydrological events, and the calculation of confidence intervals
for these quantiles (CIQs) is also essential, as it provides a measure of the statistical error involved in
the estimation. This study revisits the most frequently used method for calculating CIQs for the KAP dis-
tribution and proposes a method for improving their accuracy. The calculation of CIQs has traditionally
been based on the large-sample assumption that the quantile estimators are normally distributed, but
with small samples commonly available, this assumption is shown to be quite crude. It is shown that sig-
nificantly more accurate CIQs are obtainable if the KAP quantile estimators are transformed to better fit a
normal distribution, and then corrected for possible bias. The comparison among CIQs is done on the
basis of their coverage probabilities of the true distribution quantile. The results of the comparison lead
to improved methods for calculating CIQs for the KAP distribution, the application of which is illustrated
through a hydrological example. Although the study restricts attention to the maximum likelihood (ML)
fitting method, we anticipate that the drawn recommendations would apply to other fitting methods
also.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modeling hydrological phenomena, statistical distributions
are commonly used as frequency models to fit hydrological data.
Some three-parameter frequency models such as the generalized
extreme value (GEV) distribution have been widely used to fit data
such as the annual maxima or minima of hydrological data series.
However, no fits of any one particular distribution family to finite
hydrological data series have been found to be always adequate.

Despite the demonstrated usefulness of frequency models with
three or more parameters, they are not the ones to be always rec-
ommended. In fact, in many situations involving limited amounts
of data, two-parameter models may be more appropriate because
additional parameters may lead to ‘‘over-fitting’’ of the data. More-
over, two-parameter models are the ones typically used in certain
types of modeling, such as in the Peaks-Over-Threshold (POT)
approach to modeling hydrological extremes; e.g., for fitting flood

peaks above a threshold. Such distributions have also been recom-
mended for fitting low stream-flow data by the Deficit-Below-
Threshold (DBT) approach (e.g., Ashkar et al., 2004). For these
practical reasons, it is necessary to give two-parameter distribu-
tions the attention that they deserve in hydrologic modeling.

The 2-parameter Kappa distribution, which we shall simply de-
note by KAP, has the convenience of possessing closed algebraic
expressions for its cumulative distribution function (CDF) and its
quantile function. It belongs to an important group of two-param-
eter models widely used in hydrological modeling that: (i) have
one scale parameter and one shape parameter, (ii) are defined on
the interval (0, +1), and (iii) are positively skewed. One feature
of the KAP model that makes it particularly useful for modeling
hydrologic extremes is that it belongs to the class of heavy-tailed
distributions (El Adlouni et al., 2008). Ashkar et al. (2013) discuss
some similarities and shape differences between the KAP probabil-
ity density function (PDF) and that of other 2-parameter models
such as the lognormal, gamma, Weibull, generalized Pareto and
log–logistic. Studies such as those of Mielke (1973), Park et al.
(2009) and Ashkar et al. (2004, 2013) have shown how the KAP
model can be useful in fitting meteorological data, as well as
precipitation or stream flow data above or below a threshold.
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The KAP distribution with scale parameter b and shape param-
eter a will be denoted by KAP(a,b). The PDF and CDF of this distri-
bution are respectively given by
f ðx; a;bÞ ¼ ða=bÞ½aþ ðx=bÞa��ðaþ1Þ=a

; 0 < x <1; b > 0; a > 0

ð1Þ

Fðx;a; bÞ ¼ ðx=bÞ½aþ ðx=bÞa��1=a ð2Þ

and its quantile function is given by

Qðp;a;bÞ ¼ F�1ðp; a;bÞ ¼ bp½a=ð1� paÞ�1=a ð3Þ

where p = F(x;a,b), 0 < p < 1.
Many parameter estimation methods have been proposed to fit

statistical distributions to data, but the maximum likelihood (ML)
method stands out as a particularly important fitting method be-
cause it generally leads to efficient estimators with Gaussian
asymptotic distributions (see, e.g. Hogg et al., 2004). The ML fitting
method was also the one recommended for the KAP distribution by
Park et al. (2009). A key goal in fitting distributions to data is to be
able to estimate distribution quantiles or percentiles. It is also
essential to provide a measure of the statistical error that is involved
in the estimation. This is commonly done by constructing confi-
dence intervals for the distribution’s quantiles (CIQs), assuming that
the chosen fitting model is the correct one (model uncertainty is also
very important, but will not be considered in the present study).
Hydrologists have traditionally used large-sample theory to con-
struct such CIQs. However, it is shown in the present study that such
CIQs are very inaccurate for right-tail quantile estimation in the case
of a heavy-tailed distribution such as KAP. The main goal of this pa-
per is to suggest an improvement to these classically obtained CIQs,
under a KAP model, and to show that this improvement is both prac-
tical and useful. To do this, we will begin by presenting Fisher’s
information for the KAP model, and then review how this informa-
tion has traditionally been used to derive large-sample CIQs.

The paper is organized as follows. Section 2 briefly discusses
parameter estimation by ML for the KAP distribution and presents
the basic asymptotic properties of the ML parameter estimators
(MLEs) based on Fisher’s information. Section 3 presents the
approximate sampling distribution of the KAP quantile estimators.
The most commonly used approach for calculating CIQs is then
revisited, and an improvement to this approach is proposed. Then,
through Monte Carlo (MC) simulation, the different approaches are
compared in Section 4. In Section 5, the recommendations result-
ing from the MC simulations are put to use in a hydrological appli-
cation. Finally, Section 6 presents the paper’s main conclusions and
briefly presents some future research ideas.

2. KAP MLEs and their asymptotic properties

Let Xn ¼ fXign
i¼1 denote a random sample of size n from a KA-

P(a, b) distribution with PDF given in Eq. (1); i.e., the Xi’s are inde-
pendent and identically distributed (iid) with PDF f(x;a,b). The log-
likelihood function is given by

lða;bjXnÞ ¼
Xn

i¼1

ln f ðXi;a;bÞ

¼ n ln a� n ln b� aþ 1
a

Xn

i¼1

ln½aþ ðXi=bÞa� ð4Þ

Maximizing the log-likelihood function l(a,b|Xn) comes down to
solving the following system of equations for the MLEs:

@lða;bjXnÞ
@a

���a¼â
b¼b̂

¼ 0

@lða;bjXnÞ
@b

���a¼â
b¼b̂

¼ 0

8>><>>: ð5Þ

which, for the KAP distribution, comes down to solving the fol-
lowing system:

Xn

i¼1

ln âþ ðXi=b̂Þ
âh i
� âðâþ 1Þ

Xn

i¼1

ðXi=b̂Þ
â

ln½Xi=b̂�
âþðXi=b̂Þ

â ¼ 0

n� ðâþ 1Þ
Xn

i¼1

âþ ðXi=b̂Þ
âh i�1

¼ 0

8>>>><>>>>: ð6Þ

the solution of which has to be done numerically.
Let ð _a; _bÞbe a specific value of the parameter vector (a, b). Based

on the log-likelihood function of Eq. (4), the observed (or sample-
based) Fisher’s information matrix, evaluated at ð _a; _bÞ;is given by

Jnð _a; _bÞ ¼ �
@2 lða;bjXnÞ

@a2
@2 lða;bjXnÞ

@a@b

@2 lða;bjXnÞ
@a@b

@2 lða;bjXnÞ
@b2

0@ 1A
a¼ _a
b¼ _b

¼
J11 J12

J21 J22

� �
a¼ _a
b¼ _b

ð7Þ

which is a random matrix, because it is a function of the random
sample Xn. The elements of this matrix J are mathematically devel-
oped in Appendix A.

By inverting the last term of Eq. (7), the inverse of Fisher’s ob-
served information matrix is obtained, which is key for calculating
asymptotic CIQs:

J�1
n ð _a; _bÞ ¼ VarðâÞ Covðâ; b̂Þ

Covðâ; b̂Þ Varðb̂Þ

" #
ð8Þ

Note that another matrix of key importance in information
theory is Fisher’s (expected) information matrix, Inð _a; _bÞ, which is
defined as the expected value of the observed information matrix:

Inð _a; _bÞ ¼ E½Jnð _a; _bÞ� ð9Þ

Unlike the matrix Jnð _a; _bÞ;this matrix Inð _a; _bÞ is not random be-
cause it is equal to the expectation of Jnð _a; _bÞ over all possible ran-
dom samples Xn.

Both the observed and the expected information matrices (Eqs.
(7) and (9), respectively) can be used as a basis for constructing
CIQs. However, in a notable paper, Efron and Hinkley (1978) argue
that the observed information matrix Jnð _a; _bÞ should be favoured
over the expected information matrix Inð _a; _bÞ:

The authors’ experience also supports this argument by Efron
and Hinkley (1978). An additional practical advantage of using
the matrix Jnð _a; _bÞ; instead of the matrix Inð _a; _bÞ; is that the math-
ematical calculation of Inð _a; _bÞ is much more mathematically te-
dious than calculating Jnð _a; _bÞ:For these reasons, we will base our
CIQ calculations on Eq. (7), rather than on Eq. (9).

Denoting by a0 and b0 the true parameter values of the distribu-
tion, the key asymptotic result upon which the calculation of CIQs
is based, is

â
b̂

� �n!1

� N
a0

b0

� �
; J�1

n ða0; b0Þ
� �

ð10Þ

which states that the MLE vector ðâ; b̂Þ is asymptotically normally
distributed with mean vector equal to (a0, b0) and covariance ma-
trix equal to the inverse of Fisher’s observed information matrix
evaluated at (a0, b0).

3. Approximate CIQs

Based on the approximate normality of the MLEs presented in
Eq. (10), it is now possible to obtain approximate distributions
for various useful functions of the MLEs. One such function that
is of key importance in hydrologic design and risk analysis is the
pth quantile estimator Q nðp; â; b̂Þ. Our main goal will be to obtain
the best possible approximate distribution for Qnðp; â; b̂Þ, and to
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