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s u m m a r y

Six MIKE SHE models of the Mekong are developed, each employing potential evapotranspiration (PET)
derived using alternative methods: Blaney–Criddle (BC), Hamon (HM), Hargreaves–Samani (HS), Linacre
(LN), Penman (PN) and Priestley–Taylor (PT). Baseline (1961–1990) PET varies, with PT followed by HS
providing the lowest totals, LN and BC the highest. The largest mean annual PET is over 1.5 times the
smallest. Independent calibration of each model results in different optimised parameter sets that miti-
gate differences in baseline PET. Performance of each model is ‘‘excellent’’ (monthly NSE > 0.85) or ‘‘very
good’’ (NSE: 0.65–0.85). Scenarios based on seven GCMs for a 2 �C increase in global mean temperature
are investigated. Inter-GCM variation in precipitation change is much larger (in percentage terms by 2.5–
10 times) than inter-GCM differences in PET change. Precipitation changes include catchment-wide
increases or decreases as well as spatially variable directions of change, whereas PET increases for all sce-
narios. BC and HS produce the smallest changes, LN and HM the largest. PET method does impact scenario
discharges. However, GCM-related uncertainty for change in mean discharge is on average 3.5 times
greater than PET method-related uncertainty. Scenarios with catchment-wide precipitation increases
(decreases) induce increases (decreases) in mean discharge irrespective of PET method. Magnitude of
change in discharge is conditioned by PET method; larger increases or smaller declines in discharge result
from methods producing the smallest PET increases. Uncertainty in the direction of change in mean dis-
charge due to PET method occurs for scenarios with spatially variable precipitation change, although this
is limited to few gauging stations and differences are relatively small. For all scenarios, PET method-
related uncertainty in direction of change in high and low flows occurs, but seasonal distribution of dis-
charge is largely unaffected. As such, whilst PET method does influence projections of discharge, variation
in the precipitation climate change signal between GCMs is a much larger source of uncertainty.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

The projected impacts of climate change on the global hydro-
logical cycle will have potentially significant implications for water
resources (Bates et al., 2008; Gosling et al., 2011b; Gosling, 2012)
and aquatic ecosystems (Poff et al., 2002; Matthews and Quesne,
2009). Hydrological impacts of climate change are commonly as-
sessed by forcing a hydrological model with climate projections
derived from General Circulation Models (GCMs) that are, in turn,
forced with emissions scenarios. This approach has been used for
global-scale assessments (Arnell, 2003; Nohara et al., 2006; Gos-

ling et al., 2010; Arnell and Gosling, 2013), at regional (Arnell,
1999a) and national scales (Andréasson et al., 2004), and for indi-
vidual catchments ranging in size from major river basins (Conway
and Hulme, 1996; Nijssen et al., 2001) to medium and small sized
catchments (Chun et al., 2009; Thompson et al., 2009, Thompson,
2012).

Uncertainty is associated with each stage of climate change
hydrological impact assessments (Nawaz and Adeloye, 2006; Gos-
ling et al., 2011a). There is uncertainty connected to the definition
of greenhouse gas emissions scenarios with which GCMs are
forced. Climate model structural uncertainty, which results from
the different approaches used to represent the climate system
within different GCMs, may lead to variable climate projections
for the same emissions scenario. Downscaling of GCM projections
to finer spatial and temporal scales for hydrological modelling is
another source of uncertainty (e.g. Prudhomme and Davies, 2009).

A final source of uncertainty that in comparison to GCM-related
uncertainty has received relatively little attention (Prudhomme

0022-1694 � 2013 The Authors. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.jhydrol.2013.12.010

⇑ Corresponding author. Tel.: +44 207 679 0589; fax: +44 0207 679 0565.
E-mail addresses: j.r.thompson@ucl.ac.uk (J.R. Thompson), amanda.green.09@

ucl.ac.uk (A.J. Green), daniel.kingston@geography.otago.ac.nz (D.G. Kingston).

Journal of Hydrology 510 (2014) 259–279

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol

Open access under CC BY license.

Open access under CC BY license.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2013.12.010&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2013.12.010
mailto:j.r.thompson@ucl.ac.uk
mailto:amanda.green.09@ ucl.ac.uk
mailto:amanda.green.09@ ucl.ac.uk
mailto:daniel.kingston@geography.otago.ac.nz
http://dx.doi.org/10.1016/j.jhydrol.2013.12.010
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


and Davies, 2009) is related to the hydrological models that trans-
late climate scenarios to hydrological impacts (Gosling et al.,
2011a). Research suggests, however, that this source of uncertainty
may not be negligible (e.g. Dibike and Coulibaly, 2005; Haddeland
et al., 2011; Hagemann et al., 2012; Thompson et al., 2013a).
Hydrological models range from global models (e.g. Döll et al.,
2003; Gosling and Arnell, 2011), through lumped or semi-distrib-
uted catchment models (e.g. Arnold et al., 1998), to fully distrib-
uted, physically based models (e.g. Refsgaard et al., 2010).

Hydrological model-related uncertainty may become evident
when different hydrological models are applied to the same catch-
ment. Although the models may produce equally acceptable results
for an observed baseline period, they may subsequently respond
differently when forced with the same GCM projections (Hadde-
land et al., 2011). For example, Gosling et al. (2011a) demonstrated
differences in simulated discharge for the same set of climate
change scenarios from catchment models and a global hydrological
model for six river basins around the world, with changes in mean
runoff varying by up to 25%. Thompson et al. (2013a) extended this
analysis for the Mekong by developing a second catchment hydro-
logical model (using MIKE SHE) and comparing results with the
earlier catchment model (SLURP; Kingston et al., 2011) and the
Mac-PDM.09 global model. Although in most cases the direction
of change in mean discharge was the same for the different models
for the same climate scenario, the magnitude of change varied. In
particular, the global model projected increases in discharge at
some upstream gauging stations that were three to five times as
large as those for the catchment models. A possible explanation
for these differences is the different potential evapotranspiration
(PET) methods employed by the three models.

Previous research has demonstrated that different PET methods
can produce very different climate change signals, with implica-
tions for assessments of the impacts of climate change on water re-
sources (e.g. Arnell, 1999b; Kay and Davies, 2008; Bae et al., 2011).
Kingston et al. (2009) demonstrated different PET climate change
signals on a global basis using six alternative PET methods. PET-re-
lated uncertainty was of a similar magnitude or, in some cases,
greater than GCM-related uncertainty for individual methods.
Using a simple latitudinally averaged aridity index, it was shown
that different PET methods could influence the projected direction
of change in global water availability. Gosling and Arnell (2011)
demonstrated large differences in runoff when two alternative
PET methods, Penman–Monteith and Priestley–Taylor, were used
within Mac-PDM.09. These differences varied depending on loca-
tion; higher runoff was generated using the second PET method
in relatively dry regions, whilst negative anomalies resulted for
wetter regions. Bae et al. (2011) used three alternative semi-dis-
tributed catchment models and different PET methods to simulate
climate change scenarios for a medium sized catchment (c.
7000 km2) in central South Korea. Results showed that the differ-
ent PET methods impacted runoff changes, with the magnitude
of PET-related differences varying between hydrological models
and season.

The PET method(s) employed within a hydrological model may,
therefore, be a specific source of hydrological model-related uncer-
tainty but one that has been relatively under-investigated (Prud-
homme and Williamson, 2013). There are over 50 different PET
methods that could be employed within hydrological models (Lu
et al., 2005). PET method selection may be influenced by a number
of factors. Where a hydrological model calculates PET internally,
the method will depend upon those incorporated within the model
(Bae et al., 2011). Data availability may also exert an important
influence since different PET methods require different meteoro-
logical variables. This may have important implications for climate
change assessments since less confidence is placed in GCM simula-
tions of some variables such as cloud cover and vapour pressure

compared to others, most notably temperature (Randall et al.,
2007). Similarly, other variables, such as wind speed and net radi-
ation, are typically less reliable in the gridded datasets often used
for baseline simulations (e.g. Haddeland et al., 2011) due to mea-
surement difficulties and the relatively limited number of observa-
tions (New et al., 1999). Although many large-scale (global)
hydrological models use either the Penman–Monteith or Priest-
ley–Taylor methods, these decisions are often based on the theo-
retically more realistic nature of these methods as opposed to a
large-scale validation of their output (although Sperna Weiland
et al. (2012) is an exception).

The current study investigates the implications of using alterna-
tive PET methods for discharge projections for the Mekong River of
southeast Asia. This is achieved using the MIKE SHE model devel-
oped by Thompson et al. (2013a) and its recalibration for five addi-
tional PET methods. Subsequently each of these models are used to
simulate climate change scenarios based on projections from seven
GCMs for a 2 �C increase in global mean temperature.

2. Methods

2.1. The Mekong catchment

The Mekong is the largest river in southeast Asia. It is the
world’s eighth largest in terms of annual discharge (475 km3),
12th longest (c. 4350 km) and 21st largest by drainage area
(795,000 km2) (Kiem et al., 2008). Rising in the Tibetan Highlands
at an elevation of over 5100 m, it passes through six countries be-
fore discharging into the South China Sea via the distributaries of
the Mekong Delta (Fig. 1).

The dominant climatic influence is the Asian monsoon. Rains
begin in mid-May and extend into early-October, with over 90%
of annual precipitation falling within this period (Kite, 2001). An-
nual precipitation ranges from under 1000 mm on the Korat Pla-
teau of eastern Thailand to over 3200 mm in mountainous parts
of Laos. Snow is restricted to parts of the Tibetan Highlands and
Yunan and covers approximately 5% of the catchment between
November and March. Snowmelt contributes to the initial rise of
the annual flood within the upper catchment (the Lancang; Kiem
et al., 2005). River discharge begins to rise in May and peaks be-
tween August and October. The subsequent recession continues
until March–April.

The upper catchment is characterised by narrow, steep gorges.
Land cover is primarily tundra and montane semi-desert (Kite,
2001). Further downstream, natural vegetation is dominated by
evergreen and deciduous forest (Ishidaira et al., 2008). Rapid eco-
nomic development, growing populations and conflicts have, how-
ever, caused widespread deforestation in favour of agriculture
(Nobuhiro et al., 2008; Lacombe et al., 2010). Additional pressures
stem from competition for water, contamination by agriculture,
industry and settlements, and unsustainable use of resources such
as fisheries. Dams have been implicated in changes in discharge,
sediment flows and fisheries (Hapuarachchi et al., 2008; Li and
He, 2008; Kummu et al., 2010; Wang et al., 2011). Future dams will
exacerbate these changes (Stone, 2010).

2.2. The MIKE SHE model of the Mekong

MIKE SHE is a modelling system that simulates the major pro-
cesses of the land phase of the hydrological cycle (Graham and
Butts, 2005). It has been employed in small catchments (Al Khud-
hairy et al., 1999; Thompson et al., 2004; Thompson, 2012), catch-
ments of hundreds or thousands of km2 (Feyen et al., 2000; Huang
et al., 2010; Singh et al., 2010, 2011) and major international river
basins (Andersen et al., 2001; Stisen et al., 2008). Although often

260 J.R. Thompson et al. / Journal of Hydrology 510 (2014) 259–279



Download English Version:

https://daneshyari.com/en/article/6413201

Download Persian Version:

https://daneshyari.com/article/6413201

Daneshyari.com

https://daneshyari.com/en/article/6413201
https://daneshyari.com/article/6413201
https://daneshyari.com

