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s u m m a r y

Modelling soil–water interactions provides important outputs for agriculture management and environ-
mental monitoring. Most of the existing models rely on soil hydraulic properties (SHP) as input data. Geo-
statistical approaches based on stochastic simulations provide the spatial distribution of SHP and the
uncertainty attached to their estimates. Frequently, SHP are measured in different data supports thus
one needs to guarantee the integration of these different supports to provide a coherent and reliable
model. One possible solution is to use block sequential simulation (Liu and Journel, 2009). Our work pre-
sents an application of this algorithm to map and quantify the spatial uncertainty of total porosity. Based
on the simulation outputs and on the comparison with direct sequential simulation that does not account
for the multiple supports of the data, we concluded that block sequential simulation should be used to
produce reliable input data to dynamic soil–water models.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Intensive agricultural activities in many regions of Europe are
affecting the quality of main environmental resources such as soil
and groundwater. It is of crucial importance to identify these envi-
ronmental problems and to propose solutions to minimise the po-
tential risks for public health and the ecosystems. With this
purpose, models are developed to design irrigation schemes and
to describe soil–water regimes and nutrient dynamics useful for
environmental monitoring (Verhagen, 1997; Alphen et al., 2001).
Research on this subject has produced diverse models towards
quantifying and integrating the most important physical, chemical
and biological processes active in the unsaturated zone of soils. The
application of these models is fully dependent on the availability
and quality of input data (namely, soil hydraulic properties
(SHP)) that will determine the accuracy of modelling results
(Wösten et al., 2001). However, lack of easily accessible, represen-
tative and accurate SHP is recognised as a limitation to soil–water
models reliability (Wösten et al., 1999). The reasons behind the
lack of quality of soil hydraulic data are mostly related with the

techniques used to obtain direct measurements of these proper-
ties. The majority of these techniques remain relatively time con-
suming and therefore costly (Schaap et al., 1998; Minasny and
McBratney, 2002). The cost-effectiveness of obtaining SHP can be
improved by using indirect methods to predict hydraulic proper-
ties using more easily, widely available, routinely, or cheaply mea-
sured properties (Minasny and McBratney, 2002). Methods
developed for this purpose use the so-called pedotransfer functions
(PTFs) (Bouma, 1989). By using regression or data-mining models,
PTFs relate hydraulic properties to easier to measure soil attributes
such as soil texture, organic matter content and/or other data rou-
tinely measured in soil surveys.

However, reliability of pedotransfer estimates should be care-
fully analysed since PTFs are based on general data sets and valida-
tion with ‘true’ field data is often lacking. Also, PTFs are specific for
certain edafo-climatic conditions and soil family types, hence
extrapolation to other areas beyond their geographical dataset
should be regarded carefully (Minasny et al., 1999). Concerning
the accuracy of SHP predictions, generally measured in terms of
the uncertainty attached to the result, many PTFs have been devel-
oped without including any uncertainty calculation (McBratney
et al., 2011).

One possible way to overcome PTFs limitations and to provide
an accurate estimate for SHP is to use a spatial inference model
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able to integrate the spatial variability of SHP (Wösten et al., 2001).
This can be implemented using geostatistical models. Geostatisti-
cal estimation of SHP, or any other soil property, is about predict-
ing the attribute at unsampled locations. Few studies have
previously adopted this approach for SHP mapping. The work by
Sinowski et al. (1997) shows an example of how geostatistical esti-
mation (kriging) can be used to generate maps of water retention
curves (integrating PTF information). The results obtained are a
good example of the advantages of using geostatistics for the quan-
tification of SHP. Also, the benefits of using geostatistical models to
predict any other soil property have been recognised by several
authors (for example, Goovaerts (1999) and Webster (2000)).

In this paper we present a geostatistical approach that goes be-
yond previous studies in that it provides an estimate of the spatial
distribution of SHP together with an evaluation of the uncertainty
associated with the result, while accounting for the different data
support.

When modelling uncertainty we face two main decisions:
whether to model uncertainty locally or spatially, and how to ac-
count for the different supports of the data and of the model
discretization.

Goovaerts (2001) recommends choosing the type of uncertainty
modelling guided by practical criteria. Local uncertainty modelling
is the most traditional approach and it amounts to assigning a con-
fidence interval to the estimate, or, at most, to build a local uncer-
tainty distribution from which to derive an estimate and its
associated uncertainty. However, when the aim of the study is to
use the estimates as input to another model for further prediction
(such as would be the case here in which we propose to use the
estimates as input to a subsurface water flow model) the combina-
tion of a map with local estimates and a map of local variances is of
no use (Gómez-Hernández and Wen, 1998). For this reason, we opt
for a stochastic approach to spatial uncertainty modelling by gen-
erating multiple, equally likely realizations of the SHP from their
joint distribution. Later, the postprocessing of these realizations
through the flow model will provide a model of uncertainty about
the target result.

The SHP considered in this study is total porosity (Ptotal). The
data available for our study consists in measurements of Ptotal
made for samples collected in the same soil layer but not at the
same depth hence the measured values are not reported for the
same support. This usually happens when soil surveys are per-
formed in different conditions such as different surveys or sampling
protocols. Commonly, the different data supports are ignored and
all data are treated as point data. Alternatively, a change of support
can be applied to obtain an interpolated value for a larger support, a
method largely applied in geostatistics and known as point-to-area
interpolation or block kriging (Isaaks and Srivastava, 1989); or mea-
surement values can be considered as average SHP values that
should be downscaled to a smaller support. Several authors (Got-
way and Young, 2002, 2005; Kyriakidis, 2004; Goovaerts, 2008)
have proposed to use kriging to predict point values from block
data, an approach referred to as ‘area-to-point’ kriging.

We wish to account for the data at their sampling support with-
out the need for upscaling or downscaling. This can be accom-
plished using block sequential simulation (BSSIM) as proposed by
Liu and Journel (2009). In sequential simulation, each realization
is generated by sequentially visiting each node and generating a
value at each location. At any given location, a local probability dis-
tribution function is built after solving a kriging system. This prob-
ability distribution must account for the conditioning data and for
previously simulated values. BSSIM is able to incorporate block
data, as well as point data, as conditioning data, by using point-
to-point, area-to-point, point-to-area and area-to-area covariances.
In addition, BSSIM uses the DSS algorithm (Journel, 1994; Soares,
2001) to build the local probability distribution in original space

of the variable without the need of any transformation, and it is
free of any distribution assumption on the attribute.

In this paper we demonstrate how to spatially characterize the
uncertainty of SHP accounting for different supports using BSSIM.
In order to show the importance of properly accounting for the dif-
ferent data supports, the BSSIM results are compared with those
resulting from the application of direct sequential simulation con-
sidering all data as point values.

2. Materials and methods

2.1. Soil database and study area

The soil data used in this work was extracted from a Portuguese
database (PROPSOLO, Ramos et al., 2007) comprising 347 georefer-
enced (Lisboa Hayford Gauss IGeoE projection with datum Lisboa
Hayford) soil profiles, collected in several locations across Portugal,
from 1977 to 2011. During this 30-year period, profiles were col-
lected for different public and private projects conducted by EAN
(Estação Agronómica Nacional), a Portuguese research centre for
agriculture and soil science development. Some of the data in-
cluded in PROPSOLO were provided to HYPRES (Hydraulic Proper-
ties of European Soils; Wösten et al., 1999), a European database
for soil hydraulic data.

Each sampling campaign complied with Portuguese and inter-
national procedures (Cardoso and Fernandes, 1972; FAO, 2006).
For each soil profile, a qualitative description was made, each hori-
zon was sampled, and soil properties were determined in the lab-
oratory. All soil hydraulic properties were measured on
undisturbed soil cores collected in the soil horizons/layers of the
different soil profiles included in the database (Ramos et al., 2006).

For this paper, 46 soil profiles were chosen in an area located in
the South of Portugal, with circa 3800 km2 (Fig. 1). The major soil
groups in this area are predominantly Luvisols, Cambisols, and Ver-
tisols. The criteria for selecting these soil profiles included the
number and the proximity of sampling points as well as the homo-
geneity of soil type and land use. The selected area was converted
from rainfed agriculture to irrigation over the last two decades. To
sustain the irrigation projects a greater number of soil profiles
were collected than in other Portuguese regions.

For our study, we selected only the topsoil layer for each loca-
tion. Topsoil depths varied between 10 cm and 48 cm.

Total porosity (Ptotal) was obtained from the maximum holding
capacity of 100 cm3 undisturbed soil cores in volumetric basis. Sev-
eral 100 cm3 samples were taken from each core, and their average
value was provided as Ptotal for the given core. For the 46 topsoil
samples collected in the study area, the measured Ptotal varies be-
tween 0.33 cm3/cm3 and 0.64 cm3/cm3, its histogram is shown in
Fig. 2. The spatial distribution of Ptotal is displayed in Fig. 1.

The variability observed for Ptotal can be explained by the ef-
fects of local soil texture, soil structure, organic matter content,
particle dispersion, soil crusting, changes in the concentration
and ionic composition of the soil solution, microbiological activity,
and the loading (stress) history on the soil profile (van Genuchten
and Šimůnek, 1996; Gupta et al., 2006; Strudley et al., 2008).

In the next sub-section, we describe the geostatistical approach
proposed not only to estimate Ptotal but to address two issues:
how to deal with different sampling supports and how to provide
an uncertainty measure regarding the variability of Ptotal in the
study area and not only at specific locations.

2.2. Block sequential simulation

The geostatistical model proposed in our work uses the block
sequential simulation (BSSIM), an algorithm included in the BGeost
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