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s u m m a r y

This paper improves the typhoon flood forecasting over a watershed in a mountainous island of Taiwan.
In the presence of the stiff topography in Taiwan, the typhoon rainfall is often phased-locked with terrain
and the typhoon rainfall in general is best predicted by the typhoon rainfall climate model (TRCM) (Lee
et al., 2006). However, the TRCM often underestimates the rainfall amount in cases of slowing moving
storms with strong southwest monsoon supply of water vapor flux. We apply an artificial neural network
(ANN) based southwest monsoon rainfall enhancement (AME) to improve TRCM rainfall forecasting for
the Tsengwen Reservoir watershed in the southwestern Taiwan where maximum typhoon rainfall fre-
quently occurred. Six typhoon cases with significant southwest monsoon water vapor flux are used for
the test cases. The precipitations of seven rain gauge stations in the watershed and the southwest mon-
soon water vapor flux are analyzed to get the spatial distribution of the effective water vapor flux thresh-
old, and the threshold is further used to build the AME model. The results indicate that the flux threshold
is related to the topographic lifting of the moist air, with lower threshold in the upstream high altitude
stations in the watershed. The lower flux threshold allows a larger rainfall amount with AME. We also
incorporated the rainfall prediction with a state space neural network (SSNN) to simulate rainfall-runoff
processes. Our improved method is robust and produces better flood predictions of total rainfall and mul-
tiple rainfall peaks. The runoff processes in the watershed are improved in terms of coefficient of effi-
ciency, peak discharge, and total volume.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

There are three to five typhoons each year influencing Taiwan
with torrential rainfall. Flood forecasting is one of the critical issues
of reservoir operations, especially for those reservoirs built in
watershed with stiff topography. The stream in the mountainous
watershed is rapid and the time of concentration is approximately
3–5 h. The very short concentrated time pose serious challenges for
flood forecasting and reservoir operation during typhoon landfall
periods. The Taiwan typhoon rainfall is often phased-locked with
the Central Mountain Range, with maximum rainfall often occur-
ring on the windward side of the topography. Thus knowing the
position of typhoon allows the forecasting of a precipitation
pattern and the amount of rainfall from the typhoon climatology
history. The quantitative typhoon rainfall prediction in Taiwan is

often used with a statistical approach based on the relation be-
tween the observed rainfall pattern and the tracks of typhoon in
the climatology model (e.g., Lee et al., 2006; the Typhoon Rainfall
Climate Model, TRCM). The TRCM used 371 stations over Taiwan
during 1989–2001. The model often gives reasonable precipitation
estimates on each rain gauge station for 24–36 h time scale by a gi-
ven typical cyclone center.

Typhoon Morakot 2009, with significant southwest monsoon
flow, produced a record-breaking rainfall of 2361 mm in time spans
of 48 h in the upstream of the Tsengwen Reservoir watershed (Ali-
shan station). The extreme rainfall event is caused by the very slow
moving of Typhoon Morakot and also the significant southwest
monsoon water vapor supply (Chien and Kuo, 2011). The impor-
tance of the monsoon flow water vapor supply for the typhoon hea-
vy rainfall is recognized in many of the recent studies (Chien et al.,
2008; Lee et al., 2008; Ge et al., 2010; Hong et al., 2010). Because
TRCM is based on the typhoon climatology of all scenarios, it may
underestimate the typhoon rainfall in the presence of strong
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southwest monsoon flow. The southwest monsoon flow is a large
scale meteorological feature that is well observed, thus it is possible
to improve the typhoon flood forecasting with monsoon flow water
vapor enhancement over a watershed.

The artificial neural network (ANN) algorithm is useful in
rainfall forecasting, as the algorithm is flexible and data-driven
learning in building model without prior assumptions concerning
the data distribution and also takes into account the nature of
nonlinearity (Gardner and Dorling, 1998). In order to achieve an
accurate rainfall forecasting, many meteorological factors are se-
lected as the inputs, including past observed rainfall, typhoon’s
characteristics, and satellite data (French et al., 1992; Olsson
et al., 2004; Lin and Chen, 2005; Lin et al., 2009; Hsu et al., 1997;
Bellerby et al., 2000; Hong et al., 2004; Chen et al., 2008).

The ANN approach is also useful in the rainfall-runoff processes
(Whitley and Hromadka, 1999; Anctil et al., 2005; Chang and Chen,
2003; Cigizoglu, 2005; Hu et al., 2005; Imrie et al., 2000; Wang
et al., 2009; Deka and Chandramouli, 2005; Lange, 1999; El-Shafie
and El-Manadely, 2011). In these studies, the feedforward neural
network (FNN) is adopted to perform rainfall-runoff processes.
There may be some limitations of model calibration and simulation
for a dynamical system, including using an inefficient process of
trial and error to determine the optimum structure with appropri-
ate number and configuration of its neurons in hidden layers (Imrie
et al., 2000) and no dynamics involved due to the static structure of
FNN (Chiang et al., 2004). This deficiency in flood forecasting may
be remedied by a state space neural network (SSNN) with dynam-
ics (Pan and Wang, 2004). Furthermore, Pan et al. (2007) demon-
strated that DLRNN (one type of SSNNs) only needs the current
rainfall as the input to get a satisfactory hydrograph while an
FNN, which has the same input and number of weights as the
DLRNN, performs rainfall-runoff processes poorly.

Pan et al. (2011) used an ANN-based southwest monsoon
rainfall enhancement (AME) to improve TRCM rainfall forecasting
for two mountain stations Alishan and Yushan with cumulative
rainfall over 400 mm. Their result suggested that AME improves
TRCM rainfall predictions significantly in both mountain stations.
In this paper, we update the database of TRCM to include recent
typhoons with strong southwest monsoons. We extend the previ-
ous work to investigate the impacts of the southwest monsoon
on typhoon rainfalls in the Tsengwen Reservoir watershed by
TRCM with AME. The rainfall-runoff processes are simulated with
the SSNN from the improved TRCM rainfall predictions. Based on
the SSNN, a short term rainfall-runoff forecasting for direct runoff
of time t + 1 � t + 3 could be performed from the observed rainfall
and an experiential phi index of time t for operational flood fore-
casting work (Pan and Wang, 2004). Therefore, the forecasting is
performed in this study because the hydrological responses of time
t + 1 � t + 3 are carried out based on the observed rainfall of time t
and more rainfall predictions of time t + 1 � t + 3 via TRCM with
AME. Consequently, we evaluate the performance of hydrological
models for 1–3 h ahead flood forecasting. The descriptions of
methods and data are in Section 2. The results and conclusions
are in Sections 3 and 4, respectively.

2. Methods and data

2.1. Study area and European Centre for Medium-Range Weather
Forecasts-Tropical Ocean Global Atmosphere (CMWF-TOGA) data

We select the Tsengwen Reservoir watershed as our study area.
Located in southern Taiwan, the Tsengwen Reservoir watershed is
on the upstream of the Tsengwen creek with an area of 481 km2, a
mean annual precipitation of 2700 mm approximately, and a mean
annual stream flow of 29.0 m3 s�1. The elevation of the watershed

ranges from 232.5 m to 2609.0 m and average slope is 54.4%. The
Tsengwen Reservoir is located in the downstream of the watershed
elevated at 133 m altitude. The topography, location of hydrologi-
cal and rain gauge stations in the Tsengwen Reservoir watershed is
shown in Fig. 1(a). The geographic orientation of the Tsengwen
Reservoir watershed implies favorable condition for heavy precip-
itation, especially in the west half (windward side in general) of the
watershed, where most of the rain gauge stations and the hydro-
logical station are located. The stations are in the northeastern–
southwestern orientation with the highest station Alishan
(2413 m) and the lowest station Tsengwen (207 m).

To quantify the southwest monsoon water vapor flux (SWFlux),
we use six hourly (at 0000, 0600, 1200 and 1800 Coordinated Uni-
versal Time (UTC)) advanced gridded operational analyses from
European Centre for Medium-Range Weather Forecasts-Tropical
Ocean Global Atmosphere (ECMWF-TOGA) with 1.125� � 1.125�
resolution on 925 h Pa. We compute the SWFlux at each grid with
the total wind and the specific humidity. Fig. 2 shows the differ-
ences of 925 h Pa wind speed and SWFlux between the six ty-
phoons during the post-landfall period and the averaged pattern
calculated from June to August during 2004 to 2009. Fig. 2 illus-
trates significant SWFlux for these typhoon cases, and the SWFlux
provides the needed water vapor for post-landfall extreme rainfall.
Although the SWFlux of Typhoon Kalmaegi is the weakest, but it is
still stronger than climatology. The green rectangular region
(16.875–22.5�N, 110.25–120.375�E with totally 60 grids near Tai-
wan) in Fig. 2 is used for detecting the SWFlux (Pan et al., 2011).
The averaged SWFlux in the green region is computed as equation

Flux ¼
P60

i¼1ðu2
i þ v2

i Þ
1=2 � qi

60
ð1Þ

where qi is the specific humidity of the ith grid, and ui and vi are
zonal and meridional velocity (m s�1) of the ith grid, respectively.
With southwesterly flow in mind, the Flux is calculated only when
u > 0 and v > 0. Because the water vapor flux is estimated from
ECMWF wind field and humidity field, the major possible errors
are come from temporal and spatial resolution and the lack of the
observed data over ocean. The temporal and spatial resolutions
are 6 h and 1.125�, respectively. On the other hand, the data sets
are based on quantities analysis or computed within the ECMWF
data assimilation scheme. This method has reduced the error of
few observed ocean data because satellite data has included.

2.2. Typhoon rainfall climate model (TRCM) and typhoon cases

Lee et al. (2006) developed the TRCM, which used 371 stations
during 1989–2001. The domain of TRCM is confined from 19�N to
27�N and from 118�E to 126�E, which is divided by 256 sub grids
(0.5� � 0.5�). The TRCM model comprises of a set of rainfall clima-
tology maps, which is for each rainfall station. When the typhoon
center is located at any grid box, the climatology hourly rainfall
values for 371 stations could be estimated from the maps. Thus,
knowing the typhoon tracks can estimate an hourly precipitation
pattern and amount from climatology history. The coefficient of
determinations (R2) between model estimated and observed
cumulative rainfall are 0.7 and 0.81 for Dan-Shui (DSH) River and
Kao-Ping (KPS) River basins, respectively. Moreover, The R2 are
0.69 and 0.73 if the hourly rainfall individual stations in DSH and
KPS were considered. This model often gives reasonable typhoon
precipitation estimates on 371 rain gauge stations cumulus rainfall
and rainfall intensity (mm h�1) for 24–36 h. In particular, the
performance is very well in KPS basins (Lee et al., 2006) near the
Tsengwen Reservoir watershed at southwest Taiwan.

To make TRCM more reliable to our study, we update the TRCM
database from 1989 to 2008. However, we find that the predicted
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